SPRING 2002 ODE/PDE PRELIMINARY EXAM

DO 3 PROBLEMS FROM PART I AND 3 PROBLEMS FROM PART II. YOU MUST CLEARLY INDICATE WHICH 6 PROBLEMS ARE TO BE GRADED.

PART I: ODE

1. Let $A_{n \times n}$ be a real matrix and let $f : \mathbb{R} \to \mathbb{R}^n$ be a continuous function which is periodic with period T. Consider the differential equation,

$$\frac{dx(t)}{dt} = Ax(t) + f(t).$$
(1)

- a) Under the assumption that all eigenvalues of A have nonzero real part, show there exists a unique initial condition x_0 which produces a (unique) T-periodic solution $x^*(t)$ to the equation (1).
- b) If, in addition, all eigenvalues of A have strictly negative real parts, show that the periodic solution x^* is stable, i.e., if x is an arbitrary solution of (1) then $(x(t) x^*(t)) \xrightarrow{t \to \infty} 0$.
- 2. For each of the following systems determine whether the origin is stable, asymptotically stable, unstable or totally unstable. State any theorems referred to in each case.

a)
$$\begin{cases} \dot{x}_1 = x_2 - x_1^5 \\ \dot{x}_2 = -x_1 - x_1^3 - x_2^7 \end{cases}$$

b)
$$\begin{cases} \dot{x}_1 = x_2 + x_1^5 \\ \dot{x}_2 = -x_1 - x_1^3 + x_2^7 \end{cases}$$

3. Let $y : \mathbb{R} \to \mathbb{R}$ be a nonzero solution of the differential equation,

$$8\frac{d^2y(x)}{dx^2} - 8\frac{dy(x)}{dx} + e^x y(x) = 0.$$

- a) Show that y has infinitely many zeros in the interval $(0,\infty)$ and at most one zero in the interval $(-\infty, 0)$.
- b) Label the positive zeroes as $x_1 < x_2 < \cdots < x_n < \cdots$. Show that $(x_{n+1} x_n) \xrightarrow{n \to \infty} 0$.
- 4. Prove the following:

Theorem: Suppose $f : \mathbb{R} \to \mathbb{R}$ is a globally Lipschitz continuous function. Then, for each $x_0 \in \mathbb{R}$ there exists a unique C^1 function $x : \mathbb{R} \to \mathbb{R}$ (i.e., defined for all $t \in \mathbb{R}$) such that $x(0) = x_0$ and

$$\frac{dx(t)}{dt} = f(x(t)), \quad \text{for all } t \in \mathbb{R}.$$

5. Consider the linear time varying system,

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1+t & \sin(t) & e^{-t}\cos(t) \\ -e^t & -t+2 & -e^t \\ e^t\sin(t) & e^t\sin(2t) & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Let $\Phi(t)$ denote a fundamental matrix of solutions.

- a) Derive from first principles a differential equation satisfied by $det(\Phi(t))$.
- b) Use (a) to show that the system is unstable. You must carefully state the definition of type of stability applicable here.

PART II: PDE

1. Solve the partial differential equation

$$uu_x + u_t = x; \ x \in \mathbb{R},$$

subject to $u(x, 0) = 0.$

2. Solve the Initial Value Problem in \mathbb{R}^3 for the wave equation

$$u_{tt} = \Delta u , \ x \in \mathbb{R}^3, \ t \ge 0$$

subject to initial conditions u(x,0) = 0 and $u_t(x,0) = x_3^3$.

3. Consider the eigenvalue problem

$$\frac{d^2\varphi(x)}{dx^2} + 3x^2\frac{d\varphi(x)}{dx} + \lambda\varphi(x) = 0$$

with boundary conditions $\varphi(1) = 0$ and $\varphi(2) = 0$.

- a) Carefully argue that there are infinitely many eigenvalues $\{\lambda_n\}_{n=1}^{\infty}$ and corresponding eigenfunctions $\{\varphi_n\}_{n=1}^{\infty}$ of the problem. State an orthogonality relationship satisfied by the eigenfunctions.
- b) Use the results from part (a) to derive a formal solution in the form of a "generalized" Fourier series involving φ_n for the partial differential equation

$$u_{tt} = u_{xx} + 3x^2 u_x , \quad x \in [1, 2], \quad t > 0$$

$$u(1, t) = u(2, t) = 0 \quad \text{for all } t \ge 0,$$

$$u(x, 0) = 0, \quad u_t(x, 0) = g(x) \quad \text{for all } x \in [1, 2]$$

You must derive formulae that will enable computation of coefficients in the Fourier series. You may assume without proof that the λ_n are strictly positive.

- c) Write out the explicit solution of the problem in part (b) when $g(x) = 3\varphi_2(x) + 4\varphi_6(x)$ where φ_n are the eigenfunctions given in part (a).
- 4. Let $u : \mathbb{R}^2 \to \mathbb{R}$ be a harmonic function.
 - a) State the Mean Value Theorem for harmonic functions.
 - b) Use the Mean Value Theorem to show that

$$|u(x)|^2 \le \frac{1}{\pi R^2} \iint_{\|y-x\|_2 \le R} u^2(y) \, dy_1 dy_2$$

for all $x \in \mathbb{R}^2$ and all R > 0. Here $\|\cdot\|_2$ denotes the Euclidian norm.

b) If u satisfies
$$\iint_{\|y\|_2 \le R} u^2(y) \, dy_1 dy_2 \le \sqrt{R}$$
 for all $R > 0$, prove that $u(x) = 0$ for all $x \in \mathbb{R}^2$.

5. Let z = z(x,t) denote a solution of the heat equation $z_t(x,t) - z_{xx}(x,t) = 0$ in the region $Q = \{(x,t) : 0 < x < \ell, 0 < t \le T\}$ (with $\ell > 0$ and T > 0) which is continuous in the closed region \overline{Q} . Prove that the maximum of z is achieved on the initial line $S_b = \{(x,0) : 0 < x < \ell\}$ or on the boundary lines $S_0 = \{(0,t) : 0 < t \le T\}$, $S_\ell = \{(\ell,t) : 0 < t \le T\}$.