
SPRING 2003 ODE/PDE PRELIMINARY EXAM

Do 3 problems from Part I and 3 problems from Part II. You must clearly
indicate which 6 problems are to be graded.

PART I: ODE

1. Construct an example, ẋ(t) = A(t)x(t), x(t) ∈ R2, where A : R → R2×2 is a matrix valued
function, such that the eigenvalues of A(t) have negative real part for each t ∈ R, but the
origin is unstable.

2. a) Show that for a second order equation of the form ÿ(t)+ a(t)y(t) = 0, the Wronskian
of any two solutions is a constant.

b) The third order equation
...
y + 3t−1ÿ− 2t−2ẏ+ 2t−3y = 0 for t > 0 has a fundamental

system of solutions given by y1(t) = t, y2(t) = t log(t), y3(t) = 1/t2. Using an initial
time t0 = 1 show that the Wronskian W (t) = 9/t3 for t ≥ 0.

c) Give an example of functions y1(t) and y2(t) which are linearly independent on R and
yet the Wronskian W (t) ≡ 0 for all t ∈ R.

3. For the system

{
ẋ = y − x3 + xy3

ẏ = −x− y5 , show that the origin is a globally asymptotically

stable equilibrium. (Hint: Consider V (x, y) = 1/2(x2 + y2) and use Young’s inequality).

4. Consider the Sturm-Liouville eigenvalue problem

d

dx

(
k(x)

dy(x)

dx

)
+ λy(x) = 0, y(0) = 0, y(1) = 0,

where k ∈ C2([0, 1]) and k(x) > 0 for all x ∈ [0, 1].

You may assume without proof that all eigenvalues are real, there are infinitely many
eigenvalues which can be ordered as λ1 < λ2 < · · · < λn < · · · , having no finite cluster
points. Let vn be the eigenfunction associated with λn, n = 1, 2, · · · .

a) Show that λ1 > 0.

b) Show that yn has exactly (n− 1) zeros in (0, 1).

c) Let k1 and k2 be positive constants such that k1 < k(x) < k2 for all x ∈ [0, 1]. Show
that

k2
1(n+ 1)2π2

k2

< λn <
k2

2(n+ 1)2π2

k1

.

5. a) Let α ∈ C1[0,∞) satisfy α̇(t) ≤ α(t), ∀ t ≥ 0 and α(0) = 1. Use Gronwall’s inequality
(or whatever method you prefer) to show that α(t) ≤ et.

b) Suppose x ∈ C1[0,∞) satisfies ẋ(t) = −2x(t) + e−tα(t), where α(·) ≥ 0 is as in part
a). Show that x(t) is bounded.



PART II: PDE

1. Solve the quasilinear Cauchy problem

xux + yuuy = −xy

subject to u = 5 on xy = 1 and x > 0.

(Hint: It might be useful to compute
d

dr
(x(r, s)y(r, s)) )

2. Solve the initial value problem,

utt = uxx + uyy, t ≥ 0, (x, y) ∈ R2

u(x, y, 0) = x, ut(x, y, 0) = y, ∀ (x, y) ∈ R2.

3. Consider the equation,

utt = ∆u− u, t ≥ 0, (x, y) ∈ R2

u(x, y, 0) = ϕ(x, y), ut(x, y, 0) = ψ(x, t), ∀ (x, y) ∈ R2,

where ϕ, ψ ∈ C2(R2) are given and ∆ is the Laplacian. Obtain an energy inequality and
use it to show that C2 solutions of the problem are unique. (You do not have to prove
existence).

4. For x ∈ Rn let ‖x‖ denote the Euclidean norm of x. Work both parts a) and b):

a) Show that v(x) = ‖x‖2−n is harmonic on Rn\{0} if n ≥ 3.

b) Let Ω = B1(0) (the open unit ball) in R4, and suppose that u ∈ C2(Ω) (where Ω is
the closure of Ω) is such that ∆u ≥ 0 on Ω. Suppose u takes its maximum value at

x0 ∈ ∂Ω (the boundary of Ω). Let ν = x0/‖x0‖. Show that either
∂u

∂ν
(x0) > 0 or u is

a constant on Ω.
(Hint: let w(x) = u(x)− ε(1− ‖x‖−2) on an appropriate subdomain of Ω with small
ε and use the maximum principle.)

5. Setup: Let Ω ⊂
open

Rn. A function v : Ω → R is said to be pseudo-subharmonic on Ω if

v(ξ) ≤ 1

ωn

∫
‖x‖=1

v(ξ + rx) dSx for every ξ ∈ Ω

provided that r > 0 is small enough. Here ωn denotes the measure of the unit sphere in
Rn and dSx denotes surface measure on ‖x‖ = 1.

Problem: Let u1, . . . , uk ∈ C(Ω) be pseudo-subharmonic in Ω and define

u(x) = max{u1(x), . . . , uk(x)} for x ∈ Ω.

Show that u is pseudo-subharmonic on Ω.


