SPRING 2010 ODE/PDE PRELIMINARY EXAM

DO 3 PROBLEMS FROM PART I AND 3 PROBLEMS FROM PART II. YOU MUST CLEARLY INDICATE WHICH 6 PROBLEMS ARE TO BE GRADED. GIVE A FULL STATEMENT OF THE THEOREMS USED IN PROVING THE RESULTS.

PART I: ODE

1. Consider the general first order homogeneous linear system:

$$\dot{X}(t) = AX(t) - X(t)A, \qquad X(0) = X_0$$
 (1)

where $X(t) \in \mathbb{R}^{n \times n}$ for each $t \in \mathbb{R}$ and A is a fixed $n \times n$ real matrix.

- (a) Find an expression for the solution X(t) in terms of the matrices A and X_0 for an arbitrary $t \in \mathbb{R}$.
- (b) Show that the eigenvalues of X(t) for any t are the same as the eigenvalues of X_0 .
- (c) When A is skew-symmetric (that is, $A^T = -A$), show that the system (1) is stable. Hint: Use the fact that the 2-norm of a $n \times n$ real matrix B is equal to the spectral radius of $B^T B$, that is, $||B||_2 = [\max_{1 \le i \le n} |\lambda_i(B^T B)|]^{\frac{1}{2}}$.
- 2. Consider the general first order homogeneous linear system:

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t), \quad \mathbf{x}(t_0) = \mathbf{x}_0, \tag{2}$$

where $\mathbf{x}(t) \in \mathbb{R}^n$, $t \in \mathbb{R}$, and A is given by: $A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$, where A_{11} is a $r \times r$ matrix with $1 \le r < n$.

(a) Show that the fundamental matrix X(t) is of the form

$$X(t) = \begin{bmatrix} X_{11}(t) & X_{12}(t) \\ 0 & X_{22}(t) \end{bmatrix}, \tag{3}$$

where X_{11} is a $r \times r$ matrix. Find expressions for $X_{ij}(t)$ in terms of A_{ij} .

- 2. (b) Show that if $\mathbf{x}_0 \in \text{span}\{\mathbf{e}_1, \dots, \mathbf{e}_r\}$, then $\mathbf{x}(t) \in \text{span}\{\mathbf{e}_1, \dots, \mathbf{e}_r\}$ for all t.
 - (c) Suppose A has real eigenvalues. Then the Schur decomposition of A is given by $A = PTP^T$ where P is orthogonal and T is an upper triangular matrix. Let $P = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_n]$. Show that if $\mathbf{x}_0 \in \text{span}\{\mathbf{p}_1, \cdots, \mathbf{p}_r\}$, then $\mathbf{x}(t) \in \text{span}\{\mathbf{p}_1, \cdots, \mathbf{p}_r\}$ for all t, for any $1 \le r \le n$.
- 3. Let $f(t, \mathbf{x})$ be piecewise continuous in t, and locally Lipschitz in \mathbf{x} on $[t_0, t_1] \times D$, for some domain $D \subset \mathbb{R}^n$. Let W be a compact subset of D. Let $\mathbf{x}(t)$ be the solution of $\dot{\mathbf{x}}(t) = f(t, \mathbf{x})$ starting at $\mathbf{x}(t_0) = \mathbf{x}_0 \in W$. Suppose that $\mathbf{x}(t) \in W$ for all $t \in [t_0, T)$, where $T < t_1$.
 - (a) Show that $\mathbf{x}(t)$ is uniformly continuous on $[t_0, T)$.
 - (b) Show that $\mathbf{x}(T)$ is defined and belongs to W, and $\mathbf{x}(t)$ is a solution on $[t_0, T]$.
 - (c) Show that there exists a $\delta > 0$ such that the solution is defined on $[t_0, T + \delta]$.
- 4. Consider the system:

$$\frac{dx_1}{dt} = f(x_3) - b_1 x_1$$

$$\frac{dx_2}{dt} = a_1 x_1 - b_2 x_2$$

$$\frac{dx_3}{dt} = a_2 x_2 - b_3 x_3,$$

where a_1, a_2, b_1, b_2, b_3 are positive real numbers, and f is a positive and monotone decreasing function. Assume f to be continuously differentiable.

- (a) Show that there exists an equilibrium point $\mathbf{x}_0 = (x_{01}, x_{02}, x_{03})$ in the first octant (that is, $x_{0i} > 0$ for i = 1, 2, 3).
- (b) Show that there exists $\epsilon > 0$ such that if $-\epsilon < f'(x_{03}) < 0$ then the equilibrium point is asymptotically stable.

PART II: PDE

1. Let
$$Lu = \sum_{i=1}^{n} a_i(x) \frac{\partial^2 u}{\partial x_i^2}$$
.

Assume that the coefficients of the operator L satisfy the conditions $0 < \alpha \le a_i(x) \le \beta < \infty$ for $i = 1, 2, \dots, n$, where α, β are constants. Let $U \subset \mathbb{R}^n$ be the domain (n > 2).

- (a) Prove that if $\frac{\alpha}{\beta} > \frac{2}{n}$, then there exist s > 0 such that the function $G(x) = |x|^{-s}$ is super-elliptic, that is $LG(x) \leq 0$.
- (b) Let $u \in C^2(U) \cap C^0(\overline{U})$ be sub-elliptic (that is, $Lu \geq 0$), and $\nu \in C^2(U) \cap C^0(\overline{U})$ be super-elliptic (that is, $L\nu \leq 0$). State (you need not prove) the maximum principle for super-elliptic and sub-elliptic functions.
- (c) Let Lu=0 in $U\setminus\{0\}$, $u\in C^2(U\setminus\{0\})\cap C^0(\overline{U}\setminus\{0\})$. Here $0\in U$. Let $M(r)=\max_{|x|=r}|u(x)|$ for r>0.

Assume $\frac{\alpha}{\beta} > \frac{2}{n}$, and $\lim_{r \to 0} M(r)r^s = 0$ and u(x) = 0 on the boundary ∂U , where s is from item (a) and is such that $LG \leq 0$.

Prove that u(x) = 0 in U.

2. Suppose that the domain $U \subset \mathbb{R}^n$ has a smooth boundary, and $D = U \times (0, T]$. Let $a_i(t) > 0$ for $i = 1, 2, \dots, \beta(x, t) > \beta_0 > 0$ for all $x \in U$ and t > 0. Let $u(x, t) \in C^2(D) \cap C^0(\overline{D})$ be a solution of the intial-boundary value problem (IBVP):

$$\beta(x,t) \frac{\partial u}{\partial t} = \sum_{i=1}^{n} a_i(t) \frac{\partial^2 u}{\partial x^2} - u \quad \text{in } U \times (0,T],$$
$$u = h(x,t) \quad \text{on } \partial U \times (0,T],$$
$$u = g(x) \quad \text{on } \partial U \times \{0\},$$

where h(x,t) and g(x) are given data.

Prove that the solution u(x,t) of the above IBVP is unique.

Figure 1: Figure for PDE problem 3 (figure not to scale).

- 3. Let u(x,t) be a displacement of the infinitely long string (assume $-\infty < x < \infty$). Assume that at time t = 0, the displacement of the string is perturbed as shown in Figure 1. Assume that the velocity at t = 0 is equal to zero.
 - (a) State the above problem in terms of an initial value problem for the wave equation

$$\frac{\partial^2 u(x,t)}{\partial x^2} = \frac{\partial^2 u(x,t)}{\partial t^2}.$$

- (b) Find a time t_0 and a point x_0 with $-\frac{1}{2} < x_0 < \frac{1}{2}$, so that the displacement attains its maximum value.
- 4. (a) Let $f(\mathbf{x})$, $\mathbf{x} = (x_1, \dots, x_n)$ be a function belonging to $L^2(U)$. State the definition of generalized derivative f_{x_i} ; $1 \le i \le n$ in Sobolev sense.
 - (b) Define the Sobolev space $W_2^1(U)$.
 - (c) Prove the Poincare' inequality for the function $u(x_1, x_2) \in C^1(\overline{U})$ satisfying the following condition: $u(x_1, x_2) = 0$ when $x_2 = 1 x_1$. Here, $U = \{(x_1, x_2) : 0 < x_1 < 1, 0 < x_2 < 1 x_1\}$ is a triangle.