SPRING 2011 ODE/PDE PRELIMINARY EXAM

DO 3 PROBLEMS FROM PART I AND 3 PROBLEMS FROM PART II. YOU MUST CLEARLY INDICATE WHICH 6 PROBLEMS ARE TO BE GRADED. GIVE A FULL STATEMENT OF THE THEOREMS USED IN PROVING THE RESULTS.

PART I: ODE

1. Consider the linear time invariant system of equations:

$$\dot{x}_1 = A_{11}x_1 + A_{12}x_2
\dot{x}_2 = A_{21}x_1 + A_{22}x_2,$$
(1)

where A_{11} is an $n_1 \times n_1$ matrix and A_{22} is an $n_2 \times n_2$ matrix.

- (a) State La Salle's invariance principle.
- (b) Suppose there exists an $n_1 \times n_1$ constant matrix P such that

$$A_{11}^T P + P A_{11} = -I. (2)$$

Prove that P must be non-singular.

(c) Suppose that there exists a constant matrix P satisfying (2). Use the function $V(x_1) = x_1^T P x_1$ to prove that the origin $x_1 = 0$ is locally asymptotically stable for the system

$$\dot{x}_1 = A_{11}x_1. \tag{3}$$

(d) Suppose that there exists a P satisfying (2). Further suppose that there exists an $n_2 \times n_2$ constant matrix Q such that

$$A_{22}^T Q + Q A_{22} = -I. (4)$$

Use $V(x_1, x_2) = x_1^T P x_1 + x_2^T Q x_2$ to prove that the origin $(x_1, x_2) = (0, 0)$ for the system (1) is locally asymptotically stable provided $||A_{12}||$ and $||A_{21}||$ are sufficiently small.

2. Consider the two dimensional system:

$$\frac{dx}{dt} = -y + x(1 - x^2 - y^2)$$

$$\frac{dy}{dt} = x + y(1 - x^2 - y^2).$$

- (a) Show that the set $S = \{(x,y) | x^2 + y^2 = 1\}$ is an invariant set for the system. This means that if the initial point (x_0, y_0) is in the set S, then the solution trajectory lies in S.
- (b) Show that for an initial condition in S the solution is of the form: $x(t) = \cos(\omega t + \phi)$ and $y(t) = \sin(\omega t + \phi)$, where $\omega > 0$ and $\phi \in [0, 2\pi)$. What is the value of ω ?
- (c) Obtain the equations of the system in polar coordinates. Using these equations, show that the set S is an ω limit set that is, every trajectory except the zero trajectory spirals towards this set as $t \to \infty$.
- 3. Consider the ODE:

$$\frac{d^2y}{dt^2}(t) + t^{-1}a_1\frac{dy}{dt}(t) + t^{-2}a_0y(t) = 0, (5)$$

where a_0 and a_1 are constants.

(a) Write the ODE in the form:

$$\frac{dx}{dt} = t^{-1} A x, (6)$$

where A is a constant matrix, and x is a vector.

- (b) For a scalar t > 0 and a constant square matrix A, define $t^A = e^{A \ln(t)}$. Show that the solution of (6) is of the form: $x(t) = t^A x_0$ where $x_0 = x(1)$. Hint: Re-parameterize the variable t and rewrite (6) in terms of the new variable.
- (c) Prove that for scalars $t_1, t_2 > 0$, we have:

$$t_1^A t_2^A = (t_1 t_2)^A.$$

Hint: Use any properties of the exponential of a matrix you know.

(d) Prove that for t > 0:

$$\det(t^A) = t^{\operatorname{trace}(A)}.$$

4. Show that the origin is locally asymptotically stable for the system

$$\dot{x}_1 = -\sin(x_1) + x_1 x_2^2, \quad \dot{x}_2 = -x_2 - x_1^2 x_2. \tag{7}$$

State clearly any theorem you use to prove your claim.

PART II: PDE

5. Given L > 0. Let $u_T(x,t)$, T > 0, be a classical solution of the initial value problem:

$$(u_T)_t = (u_T)_{xx}, \quad 0 < x < L, \ t > 0.$$

$$u_T(0,t) = u_T(L,t) = 0, \quad t > 0$$

$$u_T(x, -T) = 1, \quad 0 < x < L.$$

(a) Prove that for t > -T

$$\frac{d}{dt} \int_0^L u_T^2(x,t) dx \le -\int_0^L (u_T)_x^2(x,t) dx.$$

(b) Prove that there exists a positive constant C such that

$$C \int_0^L u_T^2(x,t) dx \le \int_0^L (u_T)_x^2(x,t) dx.$$

(c) Prove that

$$\int_0^L u_T^2(x,t)dx \to 0 \text{ as } t \to \infty.$$

6. Let U be an open subset of \mathbb{R}^n and let $u \in C^2(U) \cap C(\overline{U})$ be a classical non-negative solution of the equation

$$\Delta u + cu = 0$$
 in U .

where c is a positive number.

- (a) Find a function f(r), $r \ge 0$, such that $\lim_{r\to 0} f(r) = 0$ and the function v(x) = u(x) + Mf(|x|) is subharmonic in U, that is, $-\Delta v \le 0$ in U. Here $M = \max_{\overline{U}} u$.
- (b) Show that there is R > 0 such that if $U \subset \{x \in \mathbb{R}^n : |x| < R\}$ then

$$\max_{\overline{U}} u \le 2 \max_{\partial U} u.$$

7. Let U be an open, bounded subset of \mathbb{R}^n with C^2 boundary. Let u(x,t) be a classical solution of the initial boundary value problem

$$u_{tt} + k(x,t)u_t = \text{div}(a(x)\nabla u), \ x \in U, \ t > 0,$$

 $u = \phi(x,t), \ x \in \partial U, \ t > 0,$
 $u(x,0) = f(x), \ u_t(x,0) = g(x), \ x \in U,$

where k(x,t), a(x), g(x), f(x), $\phi(x,t)$ are smooth functions.

Prove that if $k(x,t) \ge 0$ and $0 < c \le a(x,t) \le C < \infty$ for all (x,t), then the above solution u(x,t) is unique.

8. Solve the equation

$$u_x u_y = 3$$
 on $U = \{(x, y) \in \mathbb{R}^2 : x > 0\},$
 $u(x, 0) = \log x, \quad x > 0.$

where u = u(x, y), and log denotes the natural logarithm.