May 2018 ODE/PDE Preliminary Examination

Part I: ODE. Do 3 of the following 4 problems. You must clearly indicate which 3 are to be graded. Problems 1, 2, and 3 will be graded if no indication is given. Strive for clear and detailed solutions.

1. Let $f(t, x) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be continuous and suppose there are $k_1, k_2 > 0$ such that

$$||f(t,x)|| \le k_1 + k_2 ||x||$$

for any $x \in \mathbb{R}^n$ and for all $t \in [t_0, \infty)$. Prove that the solution of

$$\dot{x} = f(t, x), \quad x(t_0) = x_0$$

satisfies

$$||x(t)|| \le ||x_0||e^{k_2(t-t_0)} + \frac{k_1}{k_2} \left[e^{k_2(t-t_0)} - 1\right]$$

for all $t \ge t_0$ for which the solution exists.

2. Consider the linear system $\dot{x} = A(t)x$ where the square matrix function A is a continuous, periodic function with the smallest positive period ω . Such systems are called Floquet systems.

Let $\Phi(t)$ be the fundamental matrix for the system. That is, $\Phi(t)$ is a square matrix function that satisfies the matrix equation $\dot{X} = A(t)X$ and $\det \Phi(t) \neq 0$ for all t. Then there is a square constant matrix M such that $\Phi(t + \omega) = \Phi(t)M$ for all t and the eigenvalues μ of $C := \Phi^{-1}(0)\Phi(\omega)$ are called the Floquet multipliers of the Floquet system.

- a. If $\mu = -1$ is a Floquet multiplier, prove there is a nontrival solution with period 2ω .
- b. Find the Floquet multipliers for the Floquet system

$$\dot{x} = \begin{bmatrix} 1 - \cos t & 0\\ \cos t & -1 \end{bmatrix} x.$$

3. Determine the stability of all equilibrium points of the system

$$\begin{aligned} \dot{x} &= -x - y^2 \\ \dot{y} &= -\frac{1}{2}y + 2xy. \end{aligned}$$

Identify a family of positively invariant sets.

- 4. This question has two parts.
 - a. State the Poincare-Bendixson Theorem.
 - b. Use it to show that the system

$$\dot{x} = x - y + x^3 \dot{y} = x + y - y^3$$

has a periodic solution. Here the only equilibrium point is (0, 0).

MAY 2018. **PRELIMINARY EXAMINATION** Partial Differential Equations

Do three out of four problems below. Clearly indicate in the following boxes which three problems have to be graded, otherwise problems 1, 2, and 3 will be used for grading.

- **1.** Let Ω be the rectangular domain $\{(x, y) : a < x < b; c < y < d\}$.
 - Let $u(x,y) \in C^4(\overline{\Omega})$ be a classical solution of the problem

$$u_{xxxx} + u_{yyyy} = -u^{2n+1}$$
 in Ω , $n = 1, 2, 3, ...$
 $u(x) = f(x, y)$ and $\frac{\partial u}{\partial \nu} = g(x, y)$ on the boundary $\partial \Omega$,

where $\nu = \nu(x, y)$ is the outward normal vector to the boundary $\partial \Omega$.

Prove that the above solution u(x, y) is unique.

Hint: You may use Poincaré's inequality for the functions w(x, y), $w_x(x, y)$ and $w_y(x, y)$ such that $w = w_x = 0$ when x = a and x = b, and $w = w_y = 0$ when y = c and y = d.

- Let u(x) ∈ C²(ℝⁿ) be a classical solution of the equation Δu = 0 in ℝⁿ, for n ≥ 2, such that derivatives u_{xi} ≥ C > -∞ for i = 1, 2, ..., n.
 Prove that u(x) = B + ∑_{i=1}ⁿ b_ix_i for some constants B, b₁,..., b_n.
 Hint: You may use Liouville Theorem for harmonic functions.
- **3.** Let $D = U \times (0, \infty)$, where U is a bounded domain in \mathbb{R}^n with $n \ge 1$. Let $u = u(x, t) \in C^{2,1}_{x,t}(\overline{D})$ be a classical solution of the following initial, boundary value problem for sine-Gordon-type equation

$$u_t - \beta \Delta u = \alpha \sin u \quad \text{in } D,$$

$$u(x,0) = u_0(x)$$
 on U ,
 $u(x,t) = f(x,t)$ on $\partial U \times [0,\infty)$,

where $\alpha \in \mathbb{R}$, and $\beta > 0$ are constants.

Prove that this solution u(x,t) is unique.

Hint: You may use energy method.

4. Let u(x,t) be a classical solution of the Cauchy problem for the wave equation:

$$u_{tt} - \Delta u = B(u_t, |\nabla u|) \quad x \in \mathbb{R}^n, \ t > 0,$$

with initial data

$$u(x,0) = A = constant$$
 and $u_t(x,0) = 0$, for all $|x| \le R$,

where B is a function from \mathbb{R}^2 to \mathbb{R} , and the positive number R is fixed. Assume that there exists a constant C > 0 such that

$$|B(z,\xi)| \le C(|z|+|\xi|) \quad \forall (z,\xi) \in \mathbb{R}^2.$$

Prove that

$$u(x,t) = A,$$

for all (x, t) such that |x| < R - t and $0 \le t \le R$. Hint: You may use the energy $E(t) = \int_{\{|x| < R-t\}} u_t^2(x, t) + |\nabla u(x, t)|^2 dx$.