Do 8 of the following 10 problems.

1. Let X be a discrete random variable that can only assume the values $0, 1, 2, \ldots$ Prove that

$$E(X) = \sum_{k=0}^{\infty} P\{X > k\}$$

2. Let X_1, \ldots, X_n be a random sample from the density

$$f(x;\theta) = \left\{ \begin{array}{ll} \frac{\log \theta}{\theta - 1} \theta^x & , \ 0 < x < 1 & , \ \theta > 1 \\ 0 & , \ \text{elsewhere} \end{array} \right.$$

(You may find it helpful to realize that $\theta^x = e^{x \log \theta}$.)

- (a) Compute $E(X_i)$, $i = 1, \ldots, n$.
- (b) Find a sufficient statistic for θ .
- (c) Compute the Fisher information in the random sample.
- 3. Let X and Y be independent random variables with p.d.f.'s $f_x(x) = \begin{cases} \frac{1}{\theta}e^{-x/\theta} &, x > 0, \theta > 0 \\ 0 &, \text{ elsewhere} \end{cases}$ and $f_y(y) = \begin{cases} \frac{1}{\alpha}e^{-y/\alpha} &, y > 0, \alpha > 0 \\ 0 &, \text{ elsewhere} \end{cases}$.
 - (a) Find $P(X \leq Y)$
 - (b) Find $P(X \le t, X \le Y)$
- 4. Let X_1, \ldots, X_n be i.i.d. random variables with c.d.f. $F(x;\theta)$ determined by the odds ratio

$$\frac{F(x;\theta)}{1-F(x;\theta)}=R(x;\theta).$$

Find the method of moments estimator of θ if

(a)
$$R(x;\theta) = e^{(x-\theta)}, x > \theta, -\infty < \theta < \infty$$

(b)
$$R(x;\theta) = (x-\theta)^2, x > \theta, -\infty < \theta < \infty$$

$$\left(\text{ Hint: } \int_0^\infty \frac{dt}{(1+t^2)^2} = \frac{\pi}{4}\right)$$

- 5. Let X_1, \ldots, X_n denote a random sample from the uniform distribution on the interval $(0, \theta)$.
 - (a) Find an unbiased estimator for θ , based on the sample mean \bar{x} . Denote it by $\widehat{\theta}_1$.
 - (b) Find an unbiased estimator for θ , based on the n^{th} order statistic $X_{(n)} = \max(X_1, \ldots, X_n)$. Denote it by $\widehat{\theta}_2$.
 - (c) Define the efficiency of $\widehat{\theta}_1$ relative to $\widehat{\theta}_2$ by the ratio $\operatorname{Var}(\widehat{\theta}_2)/\operatorname{Var}(\widehat{\theta}_1) = \operatorname{Eff}(\widehat{\theta}_1,\widehat{\theta}_2)$. Find $\operatorname{Eff}(\widehat{\theta}_1,\widehat{\theta}_2)$.

- 6. Suppose n integers are drawn from $\{1, 2, ..., N\}$ at random and with replacement.
 - (a) Find the method of moments estimatior, \hat{N}_1 , of N.
 - (b) Find $E(\widehat{N}_1)$.
 - (c) Find Var (\widehat{N}_1) .
 - (d) Find the maximum-likelihood estimator, \hat{N}_2 of N.
- 7. Suppose that eight observations X_1, \ldots, X_8 are drawn at random from a distribution with the following p.d.f.

$$f(x;\theta) = \begin{cases} \theta x^{\theta-1} & , & 0 < x < 1 \\ 0 & , & \text{elsewhere} \end{cases}, \quad \theta > 0$$

Show that the UMP test of

$$H_0: \theta = 1$$
 against $H_1: \theta > 1$

at the α level of significance is given by the rejection region $C = \{(X_1, \dots, X_8) : \sum_{i=1}^8 \ln X_i \le c\}$. Explain how the constant c is found.

8. Let X_1, \ldots, X_n be a random sample from the distribution that has the p.d.f.

$$f(x;\theta) = \begin{cases} \theta^x e^{-\theta}/x! & , & x = 0, 1, 2, \dots ; \theta > 0 \\ 0 & , & \text{elsewhere} \end{cases}$$

- (a) Show that $T = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ .
- (b) Construct the best unbiased estimator for θ . Does the variance of this estimator attain the Rao-Cramér bound?
- (c) Construct the best unbiased estimator for the parameter θ^2 .
- 9. Let X_1, \ldots, X_n be a random sample of size n from a gamma distribution with p.d.f.

$$f(x;\alpha,\beta) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} & , x > 0, \alpha > 0, \beta > 0 \\ 0 & , \text{ elsewhere} \end{cases}$$

- (a) Show that $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $\tilde{X} = (\prod_{i=1}^{n} X_i)^{1/n}$ are jointly complete and sufficient for α and β .
- (b) For $\alpha = 2$, find the UMVUE of β . Does the variance of this estimator attain the Rao-Cramér bound?
- (c) Show that the distribution of $T = \frac{\bar{X}}{\bar{X}}$ does not depend on β . Is T independent of \bar{X} ? Explain.
- 10. Let X_1, \ldots, X_n be a random sample from a binomial distribution with p.d.f.

$$f(x;p) = \begin{cases} \binom{m}{x} p^x (1-p)^{m-x} &, x = 0, 1, \dots, m, 0 \le p \le 1 \\ 0 &, \text{elsewhere} \end{cases}$$

- (a) Find the UMVUE of p.
- (b) Show that the estimator in part (a) converges in probability to p as $n \to \infty$.