Preliminary Exam: Probability and Statistics May 2005

Work all 8 problems. Begin each problem on a new page, using one side of the sheet. Throughout "p.d.f." means "probability density function", $\mathbb{R} = (-\infty, \infty)$, and $\mathbf{1}_A$ is the indicator function of the set A (i.e. $\mathbf{1}_A(x) = 1$ if $x \in A, 0$ otherwise). A table of the standard normal distribution is attached.

1. Suppose that we are given a random sample X_1, \ldots, X_n from the p.d.f.

$$f_{\theta}(x) = \theta x^{\theta - 1} \mathbf{1}_{(0,1)}(x), \quad x \in \mathbb{R},$$

where $\theta > 0$ is an unknown parameter. The null hypothesis $H_0: \theta = 1$ is to be tested against the alternative $H_1: \theta > 1$.

- a. Determine the family of uniformly most powerful tests.
- **b.** Assuming that the sample size n is sufficiently large, use the central limit theorem to find a uniformly most powerful test of approximate significance level $\alpha = 0.05$.
- c. For sample size n = 1 find the uniformly most powerful test of exact significance level $\alpha = 0.05$.
- **2.** Let X_1, \ldots, X_n be a random sample of size *n* from the p.d.f.

$$f_{\theta}(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}} \mathbf{1}_{(0,\infty)}(x), \quad x \in \mathbb{R},$$

for some $\theta > 0$, and let \overline{X} denote the sample mean.

- **a.** Compute $E_{\theta}(\overline{X}^2)$.
- **b.** Find the uniform minimum variance unbiased estimator of $\varphi(\theta) = \operatorname{Var}_{\theta}(X_1)$.
- **c.** Check for n = 1 whether the estimator in part **b** achieves the Cramér-Rao lower bound.
- **3.** Let X_1, \ldots, X_8 be independent and identically distributed random variables, and suppose that each X_i has a standard normal distribution. Define $\overline{X}_1 = \frac{1}{4} \sum_{i=1}^4 X_i$ and $\overline{X}_2 = \frac{1}{4} \sum_{i=5}^8 X_i$.
 - **a.** What is the distribution of $\frac{1}{2}(\overline{X}_1 + \overline{X}_2)$?
 - **b.** What is the distribution of $4\overline{X}_1^2$?
 - **c.** What is the distribution of $\overline{X}_1^2/\overline{X}_2^2$?
 - **d.** For a certain number c > 0 the random variable $\overline{X}_1 / \sqrt{c\overline{X}_2^2}$ has a student-type distribution. What is c and what is the number of degrees of freedom?

continued on page 2

- **4.** Given is a random sample X_1, X_2, X_3 of size 3 from a Normal $(\theta, 1)$ distribution, $\theta \in \mathbb{R}$.
 - **a.** Find a sufficient and complete statistic for $\theta \in \mathbb{R}$.
 - **b.** Find the uniform minimum variance unbiased estimator of $\varphi(\theta) = \theta^2$. Explain!
 - c. Determine $E(X_1^2 \frac{1}{2}(X_2 X_3)^2 | \overline{X})$, where \overline{X} is the sample mean. Explain!
- 5. Suppose that X_1, \ldots, X_n are independent random variables and that X_i has density

$$f_{\theta}(x) = \frac{1}{\theta t_i} e^{-\frac{x}{\theta t_i}} \mathbf{1}_{(0,\infty)}(x), \quad x \in \mathbb{R},$$

where $\theta > 0$ is an unknown parameter and $t_i \neq 0$ a given number (i = 1, ..., n).

- **a.** Determine the maximum likelihood estimator $\hat{\theta}$ of θ .
- **b.** Determine the family of likelihood ratio tests for testing the null hypothesis H_0 : $\theta = 1$ against the alternative $H_1 : \theta \neq 1$, and prove that these tests are equivalent with rejecting H_0 when either $\hat{\theta} \leq c_1$ or $\hat{\theta} \geq c_2$ for suitable numbers $c_1 \leq c_2$ ($\hat{\theta}$ as in **a**).
- 6. Consider the function

$$f(x,y) = cx^2 y \mathbf{1}_D(x,y), \quad (x,y) \in \mathbb{R}^2,$$

where $D = \{(x, y) \in \mathbb{R}^2 : 0 < x^2 < y < 1\}.$

a. Determine the number c, such that f is a p.d.f.

Henceforth let c be the number obtained in **a** and suppose that X, Y are random variables with joint p.d.f. f.

- **b.** Compute the marignal p.d.f. f_X of X.
- c. Compute the conditional expectation E(Y|X) of Y given X.
- **d.** Which of E(Y|X) and Y has the smaller variance?
- 7. Let X_1, \ldots, X_{100} be independent and identically distributed random variables, and let each X_i have p.d.f.

$$f(x) = 2x \mathbf{1}_{(0,1)}(x), \quad x \in \mathbb{R}.$$

Give an approximation for the probability that at least 20 of these random variables exceed $2/\sqrt{5}$.

8. Let X and Y be independent and identically distributed, each with p.d.f.

$$f_{\theta}(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}} \mathbf{1}_{(0,\infty)}(x), \quad x \in \mathbb{R},$$

where $\theta > 0$ is an unknown parameter.

- **a.** Argue that X/(X+Y) is ancillary for $\theta > 0$ (i.e. has a distribution that does not depend on θ).
- **b.** Argue that X + Y and X/(X + Y) are stochastically independent for each $\theta > 0$.