Statistics Prelim, May 2009

Work all 6 problems. Please begin each problem on a new sheet of paper, and do not use both sides of the paper (continue on a new sheet of paper if the solution will not fit on a single sheet). Calculators are not allowed. You may need the following probability distributions for problems.

 \bullet b(n,p)

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x}, \quad x = 0, 1, \dots, n$$

• $Poisson(\lambda)$

$$f(x) = \frac{e^{-\lambda}\lambda^x}{r!}, \quad x = 0, 1, \cdots$$

• $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

• $Exp(\lambda)$

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0$$

- 1. Let Y be a random variable distributed as $Poisson(\lambda)$ and suppose that the conditional distribution of the random variable X, given Y = y, is b(y, p).
 - (a) Find the marginal probability mass function of X.
 - (b) Find the conditional probability mass function of Y given X.
- 2. Suppose X_1, X_2 and X_3 are HD random variables from $Exp(\lambda)$. Let $Z_1 = 3Y_1, Z_2 = 2(Y_2 Y_1)$ and $Z_3 = Y_3 Y_2$, where $Y_1 < Y_2 < Y_3$ are the order statistics corresponding to X_1, X_2, X_3 .
 - (a) Find the joint pdf of (Z_1, Z_2, Z_3) .
 - (b) Show that Z_1, Z_2 and Z_3 are independent and find their marginal distributions.
- 3. Suppose $Y_i \sim N(\beta x_i, 1)$ where the x_i 's are known constants and β is an unknown parameter. Assume the Y_i 's are independent.
 - (a) Find the MLE $\hat{\beta}$ of β .
 - (b) Show that $\hat{\beta}$ is an unbiased estimator of β
 - (c) Find the MSE of $\hat{\beta}$.

4. Let X_1, \dots, X_n be a sample from a population with the density

$$f(x;\theta) = \theta(\theta+1)x^{\theta-1}(1-x),$$

where $0 < x < 1, \theta > 0$.

(a) Show that

$$T_n = \frac{2\bar{X}}{1 - \bar{X}}$$

is a method of moments estimate of θ .

(b) Show that

$$\sqrt{n}(T_n - \theta) \xrightarrow{d} N(0, \theta(\theta + 2)^2/2(\theta + 3))$$

- (c) Show that T_n is not asymptotically efficient.
- 5. Let X_1, \dots, X_n be a random sample from $N(\mu_1, \sigma^2)$ and let Y_1, \dots, Y_n be a random sample from $N(\mu_2, 4\sigma^2)$.
 - (a) Find the maximum likelihood estimators of μ_1, μ_2 , and σ^2 .
 - (b) Derive the likelihood ratio test for testing $H_0: \mu_1 = \mu_2$ versus $H_1: \mu_1 \neq \mu_2$.
 - (c) What is the sampling distribution of your test statistic in (b) under H_0 ?
- 6. Suppose that X_1, \dots, X_n is a random sample from $Exp(\theta)$ and that Y_1, \dots, Y_m is a random sample from $Exp(\mu)$. Assume X_i and Y_j are independent for any i and j.
 - (a) Construct the likelihood ratio test that depends on the statistic

$$T = \frac{\sum_{i=1}^{n} X_i}{\sum_{j=1}^{m} Y_j}$$

for testing $H_0: \theta = \mu$ against $H_1: \theta \neq \mu$.

- (b) Find the distribution of T under H_0 .
- (c) Suppose that n=m=1. Give the exact rejection region for the size 0.05 LRT for testing $H_0: \theta = \mu$ against $H_1: \theta \neq \mu$.