Statistics Prelim, August 2010

Work all 7 problems. Begin each problem on a new sheet of paper, and do not use both sides of the paper (continue on a new sheet of paper if the solution will not fit on a single sheet). Calculators are not allowed. State any theorem or fact you use. You may need the following probability distributions for problems.

$$\begin{aligned} Poisson(\lambda) : f(x) &= \frac{e^{-\lambda} \lambda^x}{x!}, & x = 0, 1, \dots, \lambda > 0 \\ Exp(\lambda) : f(x) &= \lambda e^{-\lambda x}, & x > 0, \quad \lambda > 0 \\ b(n,p) : f(x) &= \binom{n}{x} p^x (1-p)^{n-x}, & x = 0, 1, \dots, n, \quad 0 0 \\ \chi^2(d) : f(x) &= \frac{1}{\Gamma(d/2) 2^{d/2}} x^{d/2 - 1} e^{-x/2}, & x > 0, \quad d > 0 \\ & where \ \Gamma(\alpha) &= \int_0^\infty x^{\alpha - 1} e^{-x} dx \end{aligned}$$

- 1. (15 points) Let Z_1 and Z_2 be independent $Exp(\lambda)$ random variables, $\lambda>0$. Define $X=Z_2$ and $Y=Z_1+Z_1Z_2$.
 - (a) Find the joint density of X and Y.
 - (b) Find E(Y|X=x).
 - (c) Find Var(E(Y|X)).
- 2. (15 points) Suppose X_1, \ldots, X_n is a random sample from the probability density function

$$f(x;\theta) = \theta x^{\theta-1}, \quad 0 < x < 1, \quad \theta > 0.$$

Let $W_i = -\log(X_i)$ and let θ be the unknown parameter.

- (a) Show that $\sum_{i=1}^{n} W_i$ is a complete and sufficient statistic for θ .
- (b) Show that the distribution of $2\theta \sum_{i=1}^{n} W_i$ is $\chi^2(2n)$.
- (c) Find the MVUE of θ . (Hint: Calculate $E\left[\left(\sum_{i=1}^{n} W_{i}\right)^{-1}\right]$.)
- 3. (15 points) Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be independent copies of (X, Y), whose joint distribution is specified as follows: the marginal distribution of X is $Poisson(\lambda)$, and conditioning on X = x, Y is distributed as b(x + 1, p).
 - (a) Show that the covariance between X and Y is $\alpha = p\lambda$.
 - (b) Find the maximum likelihood estimator of α , call it $\hat{\alpha}$.
 - (c) Find the asymptotic distribution of $\sqrt{n}(\hat{\alpha} \alpha)$.
- 4. (10 points) If $X_n \sim b(n, 1/n)$, show that the limiting distribution of X_n is Poisson(1).