Statistics Prelim, May 2010

Work all 7 problems. Begin each problem on a new sheet of paper, and do not use both sides of the paper (continue on a new sheet of paper if the solution will not fit on a single sheet). Calculators are not allowed. State any theorem or fact you use. You may need the following probability distributions for problems.

$$\begin{aligned} Poisson(\lambda): f(x) &= \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, \dots, \quad \lambda > 0 \\ &Exp(\lambda): f(x) = \lambda e^{-\lambda x}, \quad x > 0, \quad \lambda > 0 \\ &N(\mu, \sigma^2): f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), -\infty < x < \infty, \ -\infty < \mu < \infty, \ \sigma^2 > 0 \\ &U[a,b]: f(x) = \frac{1}{b-a}, \quad a \le x \le b, \quad a < b \end{aligned}$$

- 1. (15 points) Suppose X_1 and X_2 are independent $Exp(\lambda)$ random variables. Let $Y_1 = X_1 X_2$ and $Y_2 = X_2$.
 - (a) Find the joint density of Y_1 and Y_2 .
 - (b) Find the marginal density of Y_1 .
- 2. (15 points) Let X_0, X_1, \ldots, X_n be independent and identically distributed N(0, 1) random variables and Y_1, \ldots, Y_n be independent and identically distributed U[0, 1] random variables. Assume X_i and Y_j are independent for any i and j. Define $W_i = Y_i X_i + (1 Y_i) X_0, i = 1, \ldots, n$.
 - (a) Find the mean and variance of W_i .
 - (b) Find the covariance of W_i and W_j for $i \neq j$.
 - (c) Find the mean and variance of $S = \sum_{i=1}^{n} W_i$.
- 3. (15 points) Suppose X_1, \ldots, X_n are independent discrete random variables with probability mass function for X_i , $i = 1, \ldots, n$, given by

$$\begin{array}{c|cccc} x & 1 & 2 & 3 \\ \hline p(x;\theta) & \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{array}$$

with $0 < \theta < 1$. Let N_j be the number of observations equal to j, j = 1, 2, 3.

- (a) Show that $U = 2N_1 + N_2$ is a sufficient statistic for θ .
- (b) Find the distribution of U.
- (c) Find the MVUE of θ .
- 4. (10 points) Suppose X_1, X_2 are independent discrete random variables with probability mass function for X_i , i = 1, 2, given by

$$\begin{array}{c|ccccc} x & 0 & 1 & 2 \\ \hline p(x;\theta) & e^{-\theta} & \theta e^{-\theta} & 1 - e^{-\theta} - \theta e^{-\theta} \end{array}$$

with $0 < \theta$. Show that $X_1 + X_2$ is not a sufficient statistic for θ .

5. (15 points) It is sometimes reasonable to think of the lifetime of a piece of equipment as a random variable following an $Exp(1/\lambda)$ distribution where λ is an unknown positive real number. Suppose n identical pieces of equipment are to be run until they fail and the (random) failure times are given by X_1, \ldots, X_n . Assume that these are a random sample from the $Exp(1/\lambda)$ distribution. Consider the probability of early failure given by

$$\eta = P_{\lambda}(X_1 < x) = 1 - \exp(-x/\lambda)$$

for some fixed x > 0.

- (a) Find the MLE of η .
- (b) Find the MVUE of η . (Your answer must be a closed form function of the data.)
- 6. (15 points) Let X_1, \ldots, X_n be an IID sample from $N(\mu, \sigma^2)$, where $\mu \neq 0$ and $\sigma^2 > 0$. Let \bar{X}_n be the sample average and let S^2 be the sample variance.

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \quad S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

- (a) Show that $\bar{X}_n \xrightarrow{p} \mu$ and $S_n^2 \xrightarrow{p} \sigma^2$.
- (b) Find the joint asymptotic distribution of

$$\sqrt{n}\left(\begin{pmatrix} \bar{X_n} \\ S_n^2 \end{pmatrix} - \begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix}\right).$$

(Hint:
$$E(X_i^3) = \mu^3 + 3\mu\sigma^2$$
 and $E(X_i^4) = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$)

- (c) Find the asymptotic distribution of $\sqrt{n} \left(S_n^2 / \bar{X}_n \sigma^2 / \mu \right)$.
- 7. (15 points) Suppose that X_1, X_2, \ldots, X_n is a random sample from the following density function

$$f(x; \theta) = \begin{cases} \frac{1}{\theta} x^{(1-\theta)/\theta}, & 0 < x < 1\\ 0, & \text{otherwise} \end{cases}$$

where $\theta > 0$.

- (a) Show that the distribution of $-\log X_i$ is $Exp(1/\theta)$.
- (b) Show that this family of distributions has monotone likelihood ratio in the statistic $T = -\sum_{i=1}^{n} \log X_i$.
- (c) If we are interested in testing $H_0: \theta = \theta_0$ versus $H_1: \theta > \theta_0$, derive the form of the UMP size α test.
- (d) Explain how you can construct the UMP size $\alpha = 0.05$ test by using standard statistical tables such as Normal, t, F, and χ^2 tables.