Statistics Preliminary Examination: August 2011

Instructions:

- Work all 6 problems. Begin each problem on a new sheet of paper, and do not use both sides of the paper (continue on a new sheet of paper if the solution will not fit on a single sheet). Neither calculators nor electronic devices of any kind are allowed. Clearly state any theorem or fact that you use. The 23 parts are approximately equally weighted.
- Abbreviations/Acronyms.
 - pmf (probability mass function); pdf (probability density function); cdf (cumulative distribution function); mgf (moment generating function);
 - MOME (method of moments estimator); MLE (maximum likelihood estimator); UMVUE (uniform minimum variance unbiased estimator); UMP (uniformly most powerful test); LRT (likelihood ratio test); MLR (monotone likelihood ratio).
- Notation.
 - $-I(x \in A)$ or $I_A(x)$: indicator function for set A; takes on value 1 if $x \in A$ and 0 otherwise.
 - $\mathbb{E}(X)$: expectation of random variable X.
 - $\mathbb{V}(X)$: variance of random variable X.
 - $-X \sim N(a,b)$: X has a normal distribution with mean a and variance b.
- · Common distributions and other results.

Poisson(λ): $\mathbb{E}(X) = \lambda$, $\mathbb{V}(X) = \lambda$, and pmf

$$f(x) = \frac{e^{-\lambda}\lambda^x}{x!}I(x \in \{0, 1, \dots\})$$

Exponential(λ): $\mathbb{E}(X) = \lambda$, $\mathbb{V}(X) = \lambda^2$, and pdf

$$f(x) = \frac{1}{\lambda} e^{-x/\lambda} I(x > 0)$$

Beta (α, β) : $\mathbb{E}(X) = \alpha/(\alpha + \beta)$, $\mathbb{V}(X) = \alpha\beta/[(\alpha + \beta)^2(\alpha + \beta + 1)]$, and pdf

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} I(0 < x < 1)$$

Gamma (α, β) : $\mathbb{E}(X) = \alpha \beta$, $\mathbb{V}(X) = \alpha \beta^2$, and pdf

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} I(x > 0)$$

Order Statistics: Let $X_{(1)} \leq \cdots \leq X_{(n)}$ denote the order statistics from a random sample X_1, \ldots, X_n . If X_1 is continuous with pdf f(x) and cdf F(x), the pdf of $X_{(j)}$ and of $X_{(1)} \leq \cdots \leq X_{(n)}$ is given by:

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} [F(x)]^{j-1} [1 - F(x)]^{n-j} f(x) I(-\infty < x < \infty)$$

$$f_{X_{(1)},\dots,X_{(n)}}(x_1,\dots,x_n) = n! f(x_1) \cdots f(x_n) I(-\infty < x_1 \le \dots \le x_n < \infty)$$

- 1. Suppose that each of N men at a party throws his hat into the center of the room. The hats are first mixed up, and then each man randomly selects a hat. Let H_i be the event that the *i*th man selects his own hat.
 - (a) Show that $P(H_{i_1} \cap H_{i_2} \cap \cdots \cap H_{i_n}) = (N-n)!/N!$. (Note that this is the probability that each of the n men, i_1, i_2, \ldots, i_n , selects his own hat.)
 - (b) Compute $P(\bigcup_{i=1}^N H_i)$.
 - (c) Hence, or otherwise, show that for large N the probability that none of the men selects his own hat is approximately equal to e^{-1} . [Hint: recall that $e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$.]

- 2. A penny and dime are tossed. Let X denote the total number of heads up. Then the penny is tossed again. Let Y denote the total number of heads up on the dime (from the first toss) plus the penny from the second toss.
 - (a) Find the joint pmf of X and Y, and hence compute the marginal pmf's of X and Y.
 - (b) Find the conditional distribution of Y given X = 1.
 - (c) Show that X and Y are not independent. Compute the correlation between X and Y.

- 3. Assume X_1, \ldots, X_n is a random sample from a Poisson(λ) distribution, and let \overline{X} and S_n^2 denote the usual sample mean and variance. In addition, suppose that W, Y, Z are independent random variables, with both W and $Y \sim N(\mu, \sigma^2)$, but $Z \sim N(0, \sigma^2)$.
 - (a) Show that both $\sqrt{n}(\overline{X}-\lambda)/\sqrt{\overline{X}}$ and $\sqrt{n}(\overline{X}-\lambda)/S_n$ have a limiting standard normal distribution.
 - (b) Find the limiting distribution of $n(\overline{X} \lambda)^2$.
 - (c) Find the limiting distribution of $\sqrt{n}(\overline{X}^2 \lambda^2)$.
 - (d) Find the (exact) distribution of $\sqrt{2}(W+Y-2\mu)/\sqrt{2Z^2+(W-Y)^2}$.

- 4. Let X_1, \ldots, X_n be a random sample from a uniform distribution over the interval $[\theta 1/2, \theta + 1/2]$, where $\theta \in \mathbb{R}$ is unknown. Denote the order statistics by $X_{(1)} \leq \cdots \leq X_{(n)}$.
 - (a) Recall that if $Z_{(r)}$ is the r-th order statistic, $1 \le r \le n$, in a random sample of size n from a uniform on [0,1], then $\mathbb{E}Z_{(r)} = r/(n+1)$. Using this fact, show that if $Y_{(r)}$ is the r-th order statistic in a random sample of size n from a uniform on [a,b], then $\mathbb{E}Y_{(r)} = a + r(b-a)/(n+1)$. Produce an expression for $\mathbb{E}X_{(r)}$.
 - (b) Can a *sufficient* statistic of dimension 1 for θ be found? If so find it; if not find one of the smallest possible dimension.
 - (c) Is the sufficient statistic found in (b) complete? Justify.
 - (d) Find the Method of Moments estimator of θ . Is it unbiased?
 - (e) Is the MLE of θ unique? If so find its bias; if not produce an unbiased MLE.
- 5. Suppose that we have two independent random samples: X_1, \ldots, X_n are Exponential(θ), and Y_1, \ldots, Y_m are Exponential(μ).
 - (a) Show that the LRT of $H_0: \theta = \mu$ vs. $H_1: \theta \neq \mu$ can be based on the statistic

$$T = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i + \sum_{j=1}^{m} Y_j}.$$

- (b) When H_0 is true, find the distribution of T and show that it is independent of the distribution of $S = \sum_{i=1}^{n} X_i + \sum_{j=1}^{m} Y_j$.
- (c) Construct the size α LRT in (a) by using the large sample distribution of a $-2 \log \lambda$, where λ is the LRT statistic.
- (d) Based only on the sample X_1, \ldots, X_n , describe an exact (non-asymptotic) procedure to determine a $(1-\alpha)$ confidence interval for θ .
- 6. Suppose X_1, \ldots, X_n is a random sample from the pdf

$$f(x|\theta) = (1/\theta)x^{(1-\theta)/\theta}I(0 < x < 1),$$

where $\theta > 0$ is unknown.

- (a) Show that this family of distributions has MLR in some sufficient statistic T.
- (b) Derive the size α UMP test of $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$. Give reasons for any claims that you make.
- (c) Derive an expression for the power function $\beta(\theta)$ of the above UMP test, that can be evaluated by using χ^2 tables.
- (d) Derive a (1α) confidence interval for θ obtained by inverting the asymptotic distribution of the score statistic, $Z_S = S(\theta_0)/\sqrt{I_n(\theta_0)}$, where

$$S(\theta) = \frac{\partial \log L(\theta|\mathbf{x})}{\partial \theta}, \quad \text{and} \quad I_n(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log L(\theta|\mathbf{x})}{\partial \theta^2}\right],$$

is the expected (Fisher) Information Number.