Probability and Statistics Preliminary Examination: August 2012

Instructions:

- Work all 6 Problems. Neither calculators nor electronic devices of any kind are allowed. Clearly state
 any theorem or fact that you use. Each of the 6 Problems is equally weighted (but the parts within a
 Problem may not be).
- Abbreviations/Acronyms.
 - pmf (probability mass function); pdf (probability density function); cdf (cumulative distribution function); mgf (moment generating function);
 - MOME (method of moments estimator); MLE (maximum likelihood estimator); UMVUE (uniform minimum variance unbiased estimator); UMP (uniformly most powerful test); LRT (likelihood ratio test); MLR (monotone likelihood ratio).
- Notation.
 - $-I(x \in A)$ or $I_A(x)$: indicator function for set A; takes on the value 1 if $x \in A$ and 0 otherwise.
 - $\mathbb{E}(X)$: expectation of random variable X.
 - V(X): variance of random variable X.
 - $-X \sim N(a,b)$: X has a normal distribution with mean a and variance b.
- Common distributions and other results.

Poisson(λ): $\mathbb{E}(X) = \lambda$, $\mathbb{V}(X) = \lambda$, and pmf

$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!} I(x \in \{0, 1, \dots\})$$

Exponential(λ): $\mathbb{E}(X) = \lambda$, $\mathbb{V}(X) = \lambda^2$, and pdf

$$f(x) = \frac{1}{\lambda} e^{-x/\lambda} I(x > 0)$$

Beta (α, β) : $\mathbb{E}(X) = \alpha/(\alpha + \beta)$, $\mathbb{V}(X) = \alpha\beta/[(\alpha + \beta)^2(\alpha + \beta + 1)]$, and pdf

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} I(0 < x < 1)$$

Gamma (α, β) : $\mathbb{E}(X) = \alpha \beta$, $\mathbb{V}(X) = \alpha \beta^2$, and pdf

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta} I(x > 0)$$

Order Statistics: Let $X_{(1)} \leq \cdots \leq X_{(n)}$ denote the order statistics from a random sample X_1, \ldots, X_n . If X_1 is continuous with pdf f(x) and cdf F(x), the pdf of $X_{(j)}$, $(X_{(i)}, X_{(j)})$, and $(X_{(1)}, \ldots, X_{(n)})$, are given by:

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} [F(x)]^{j-1} [1 - F(x)]^{n-j} f(x) I(-\infty < x < \infty)$$

$$f_{X_{(i)},X_{(j)}}(x_i,x_j) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} f(x_i)f(x_j)[F(x_i)]^{i-1}[F(x_j)-F(x_i)]^{j-1-i}[1-F(x_j)]^{n-j}$$

$$\times I(-\infty < x_i \le x_j < \infty)$$

$$f_{X_{(1)},...,X_{(n)}}(x_1,...,x_n) = n!f(x_1)\cdots f(x_n)I(-\infty < x_1 \le \cdots \le x_n < \infty)$$

- 1. Toss n fair dice together. This constitutes the first toss. Now pick up only those not showing a 6, and toss them (together). This constitutes the second toss. Continue doing this until all dice show a 6. Let X denote the total number of tosses made. For example, if all dice show a 6 after the first toss, then X = 1. (Assume independence between tosses, and among dice within a toss.)
 - (a) How many tosses do you expect to make if n = 1?
 - (b) Compute the cdf of X for general $n \geq 1$.
 - (c) Show that for a discrete random variable Y whose range is the non-negative integers,

$$\mathbb{E}(Y) = \sum_{y=0}^{\infty} P(Y > y).$$

- (d) Using the above results, or otherwise, evaluate $\mathbb{E}(X)$ for the case n=2.
- 2. Let X_1, \ldots, X_5 be a random sample of size 5 from a Uniform distribution on the interval (0, 1). Denote the corresponding order statistics by $Y_1 \leq \cdots \leq Y_5$. Define $U = Y_4 Y_2$ and $V = Y_2$.
 - (a) Determine the joint distribution of (Y_2, Y_4) .
 - (b) Find the joint distribution of (U, V).
 - (c) Show that the marginal distributions of U and V are each Beta(2, 4).
 - (d) Find $\rho_{U,V}$, the correlation coefficient between U and V.
- 3. Let the random vector (X_1, \ldots, X_n) follow a <u>multivariate normal</u> distribution with $\mathbb{E}(X_i) = \mu_X$, $\mathbb{V}(X_i) = \sigma^2$, and $\mathrm{Cov}(X_i, X_j) = \rho \sigma^2$, for $i = 1, \ldots, n, \ j = 1, \ldots, n, \ i \neq j$, where $0 < \rho < 1$. Additionally, let Y_1, \ldots, Y_m be a random sample from a $\mathrm{N}(\mu_Y, \sigma^2)$ distribution, and assume that X_i and Y_k are independent, for any $i = 1, \ldots, n$ and any $k = 1, \ldots, m$. Let $\overline{X} = \sum_{i=1}^n X_i/n$ and $\overline{Y} = \sum_{k=1}^m Y_k/m$ denote the sample means of the X's and Y's, respectively, and let $S_Y^2 = \sum_{k=1}^m (Y_k \overline{Y})^2/(m-1)$ be the sample variance of the Y's.
 - (a) Show that the variance of \overline{X} is given by

$$\mathbb{V}(\overline{X}) = \frac{\sigma^2}{n} \left[1 + (n-1)\rho \right].$$

- (b) Is \overline{X} a consistent estimator of μ_X ? Justify your answer.
- (c) Find the exact distribution of

$$\frac{(\overline{X} - \mu_X)}{S_Y} \sqrt{\frac{n}{1 + (n-1)\rho}}.$$

(d) Does $S_Y^2 \xrightarrow{p} \sigma^2$? Justify your answer.

4. One way to skew a symmetric distribution, is to introduce a skewness parameter $\beta \in (-\infty, \infty)$ into the definition of the pdf. If $\phi(z)$ and $\Phi(z)$ denote respectively the pdf and cdf of a standard normal random variable Z, then X is said to have a *skew-normal* distribution if its pdf is given by

$$f(x) = 2\phi(x)\Phi(\beta x)I(-\infty < x < \infty).$$

Assume that a random sample X_1, \ldots, X_n is available from the distribution of X.

(a) Show that

$$\mathbb{E}(X) = \sqrt{\frac{2}{\pi}} \, \frac{\beta}{1 + \beta^2}.$$

- (b) Show that $X^2 \sim \chi_1^2$, a chi-square distribution with one degree of freedom. What does this fact imply about the relationship between the even moments of X and Z?
- (c) Find a MOME for β .
- (d) In the case n=2 and $x_1+x_2=0$ with $x_1\neq 0$, find the MLE of β .
- 5. Let the pdf of the bivariate random vector (X, Y) be the product of the pdfs of two independent exponentials, $X \sim \text{Exp}(1/\theta)$ and $Y \sim \text{Exp}(\theta)$, such that the joint pdf is given by

$$f(x,y|\theta) = \exp\left\{-\theta x - \frac{y}{\theta}\right\} I(x>0)I(y>0)I(\theta>0).$$

For a random sample of size n from this joint pdf, $(X_1, Y_1), \ldots, (X_n, Y_n)$, define the following statistics: $W = \sum_{i=1}^n X_i$, $V = \sum_{i=1}^n Y_i$, $T = \sqrt{V/W}$, and $U = \sqrt{VW}$.

- (a) Show that (W, V) is a minimal sufficient statistic for θ , but is not a complete statistic.
- (b) Show that U is ancillary for θ . [Hint: after obtaining the joint distribution of (T, U), use the fact that $\int_0^\infty \frac{1}{x} \exp\{-\theta y/x yx/\theta\} dx = 2K_0(2y)$, where $K_0(\cdot)$, a modified Bessel function of the 2nd kind, is independent of θ .]
- (c) Show that T is the MLE of θ .
- (d) Compute the asymptotic (large sample) distribution of the MLE of θ . Use this result as the basis for constructing an asymptotic (1α) confidence interval for θ .
- 6. Let X_1, \ldots, X_n be a random sample from the Weibull distribution with pdf

$$f(x|\theta) = \theta \gamma x^{\gamma - 1} \exp\{-\theta x^{\gamma}\} I(x > 0),$$

where $\gamma > 0$ is known and $\theta > 0$ is unknown. Note that $\mathbb{E}(X_1^{\gamma}) = 1/\theta$, and let $T = \sum_{i=1}^n X_i^{\gamma}$. We are interested in testing $H_0: \frac{1}{\theta} \leq \frac{1}{\theta_0}$ vs. $H_1: \frac{1}{\theta} > \frac{1}{\theta_0}$.

- (a) Show that a UMP test exists, and can be based on T. Find the form of the rejection region.
- (b) Show that the critical value of the rejection region for the UMP test can be based on an appropriate quantile from a χ^2 distribution, and find the power function of the corresponding size α test.
- (c) Obtain an exact (non-asymptotic) (1α) one-sided confidence interval for $1/\theta$ of the form $(\ell(\mathbf{x}), \infty)$, for some $\ell(\mathbf{x})$ which is a function of the data sample $\mathbf{x} = (x_1, \dots, x_n)$.
- (d) Suppose $1/\theta_0 = 12$. By using a normal approximation to the distribution of T, find a formula for the minimum sample size n that ensures the UMP size $\alpha = 0.01$ test of (a) has power at least 0.95 at the alternative value $1/\theta_1 = 15$. [Note the following standard normal quantiles: $z_{0.01} = 2.33$ and $z_{0.05} = 1.645$.]