Probability and Statistics Preliminary Examination: May 2013

Instructions:

- Work all 6 Problems. Neither calculators nor electronic devices of any kind are allowed. Clearly state every theorem or fact that you use. Each of the 6 Problems is equally weighted (but the parts within a Problem may not be).
- Abbreviations/Acronyms.
 - pmf (probability mass function); pdf (probability density function); cdf (cumulative distribution function); mgf (moment generating function);
 - MSE (mean squared error), MOME (method of moments estimator); MLE (maximum likelihood estimator); UMVUE (uniform minimum variance unbiased estimator); UMP (uniformly most powerful); LRT (likelihood ratio test); MLR (monotone likelihood ratio).
- Notation.
 - $-I(x \in A)$ or $I_A(x)$: indicator function for set A; takes on the value 1 if $x \in A$ and 0 otherwise.
 - $\mathbb{E}(X)$: expectation of random variable X.
 - $\mathbb{V}(X)$: variance of random variable X.
 - $X \sim N(a, b)$: X has a normal distribution with mean a and variance b.
- Common distributions and other results.

Poisson(λ): $\mathbb{E}(X) = \lambda$, $\mathbb{V}(X) = \lambda$, and pmf and mgf given respectively by

$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!} I(x \in \{0, 1, \dots\}), \qquad M(t) = \exp\{\lambda(e^t - 1)\}$$

Exponential(λ): $\mathbb{E}(X) = \lambda$, $\mathbb{V}(X) = \lambda^2$, and pdf

$$f(x) = \frac{1}{\lambda} e^{-x/\lambda} I(x > 0)$$

Beta (α, β) : $\mathbb{E}(X) = \alpha/(\alpha + \beta)$, $\mathbb{V}(X) = \alpha\beta/[(\alpha + \beta)^2(\alpha + \beta + 1)]$, and pdf

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} I(0 < x < 1)$$

Gamma (α, β) : $\mathbb{E}(X) = \alpha \beta$, $\mathbb{V}(X) = \alpha \beta^2$, and pdf and mgf given respectively by

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} I(x>0), \qquad \qquad M(t) = \left(\frac{1}{1-\beta t}\right)^{\alpha}$$

Order Statistics: Let $X_{(1)} \leq \cdots \leq X_{(n)}$ denote the order statistics from a random sample X_1, \ldots, X_n .

If X_1 is continuous with pdf f(x) and cdf F(x), the pdf of $X_{(j)}$, $(X_{(i)}, X_{(j)})$, and $(X_{(1)}, \ldots, X_{(n)})$, are given by:

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} [F(x)]^{j-1} [1 - F(x)]^{n-j} f(x) I(-\infty < x < \infty)$$

$$f_{X_{(i)},X_{(j)}}(x_i,x_j) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} f(x_i)f(x_j)[F(x_i)]^{i-1}[F(x_j)-F(x_i)]^{j-1-i}[1-F(x_j)]^{n-j} \\ \times I(-\infty < x_i \le x_j < \infty) \\ f_{X_{(1)},\dots,X_{(n)}}(x_1,\dots,x_n) = n!f(x_1)\cdots f(x_n)I(-\infty < x_1 \le \dots \le x_n < \infty)$$

- 1. Four (4) balls are to be distributed randomly into 4 urns. Let X denote the random variable that counts the number of urns containing exactly 1 ball. One way to determine the distribution of X is to count *patterns*. For example, the pattern $n_1n_2n_3n_4$ denotes any allocation that results in n_1 balls in one urn, n_2 balls in another, n_3 balls in another, and n_4 balls in the remaining urn, in any order.
 - (a) Reason that there are 256 equally likely sample points in this experiment.
 - (b) Find P(X = 4).
 - (c) Find P(X = 1).
 - (d) Compute the remaining values of the pmf of X.
- 2. Let the discrete random variables (X, Y) have a joint pmf f(x, y) given by the following table.

		X	
Y	x = 1	x = 2	x = 3
y = 0	0.15	0.10	0.30
y = 1	0.15	0.30	0.00

Define $BUP(Y|X) = \mathbb{E}(Y|X)$ and BLUP(Y|X) = a + bX to be, respectively, the best unbiased predictor and best linear unbiased predictor of Y based on X. If \hat{Y} denotes any one of these predictors, then the "unbiased" condition ensures $\mathbb{E}(\hat{Y}) = \mathbb{E}(Y)$, and the "best" condition ensures \hat{Y} is such that it minimizes the (prediction) MSE, $\mathbb{E}(Y - \hat{Y})^2$, in its respective class: either all functions of X for the BUP, or all linear functions of X for the BLUP.

- (a) For BLUP(Y|X), show that the unbiased condition requires that $a = \mathbb{E}(Y) b\mathbb{E}(X)$. Thus deduce that the value of b that minimizes the MSE is: $b = \text{Cov}(X, Y)/\mathbb{V}(X)$.
- (b) Compute BUP(Y|X) and its MSE for (X, Y) with joint pmf as in the table.
- (c) Compute BLUP(Y|X) and its MSE for (X, Y) with joint pmf as in the table.
- 3. Let X_1, \ldots, X_n be a random sample from a Uniform distribution on $(\alpha \beta, \alpha + \beta)$, where $\beta > 0$. Denote by $\overline{X} = \sum_{i=1}^{n} X_i/n$ the usual sample mean, and $X_{(1)} \leq \cdots \leq X_{(n)}$ the usual order statistics.
 - (a) Show that $\sqrt{n}(\overline{X} \alpha) \xrightarrow{d} N(0, \beta^2/3)$.
 - (b) Find the limiting (asymptotic) distribution of

$$\frac{\sqrt{3n}(\overline{X}^2 - \alpha^2)}{2\alpha\beta}$$

- (c) Does $X_{(n)} \xrightarrow{p} \alpha + \beta$? Justify your answer.
- (d) Deduce that the limiting (asymptotic) distribution of W_n is a pivotal quantity, where

$$W_n = \frac{\sqrt{n}(X - \alpha)}{X_{(n)} - X_{(1)}},$$

and thus show how it can be used to construct a $(1 - \gamma)100\%$ confidence interval for α , where $0 < \gamma < 1$.

4. Let X_1, \ldots, X_n be a random sample from a Poisson(λ) distribution. We seek estimators of $\theta = e^{-\lambda} = P(X_1 = 0)$. To this end, define the statistics:

$$T = \sum_{i=1}^{n} X_i$$
, and $W = \{$ number of X_i 's that equal 0, $i = 1, ..., n \}$

Several good estimators of θ are of the form $\hat{\theta} = a^{bT}$, for some constants a > 0 and $b \in \mathbb{R}$, possibly depending on n.

- (a) Show that for estimators the form $\hat{\theta} = a^{bT}$, we have: $\mathbb{E}(\hat{\theta}) = \exp\{n\lambda(a^b 1)\}$. Use this result to compute an expression for the MSE of $\hat{\theta}$.
- (b) Find the UMVUE of θ . Does its variance attain the Cramer Rao Lower Bound (CRLB)?
- (c) Find the MLE of θ . Is the MLE unbiased?
- (d) Find the posterior Bayes estimator (PBE) of θ resulting from the (improper) prior, $\pi(\lambda) = \lambda^{-1}I(\lambda > 0)$. Is the PBE unbiased?
- (e) Formulate an unbiased estimator of θ based on W, and compute its variance.
- 5. Let X_1, X_2 be a random sample of size 2 from a uniform distribution on the interval $(0, \theta), \theta > 0$. Define $U = X_1 + X_2$ and $V = X_{(2)}$. In a randomized hypothesis test, the rejection rule is specified via a critical function, $\psi(\mathbf{x})$, which specifies the probability of rejecting H_0 given that the sample $\mathbf{x} = (x_1, \ldots, x_n)$ is observed. The power of such a test is defined to be $\beta(\theta) = \mathbb{E}_{\theta}[\psi(\mathbf{X})]$.
 - (a) Show that U|V is uniformly distributed on the interval (V, 2V).
 - (b) For testing $H_0: \theta \leq 1$ vs. $H_1: \theta > 1$, find the size and power function of the randomized test with critical function $\psi(v) = \mathbb{E}[U \geq 1 | V = v]$.
 - (c) Is the test in (b) UMP of its size? Justify.
- 6. For parameters $0 < \lambda_1 < \lambda_2 < \infty$, let the bivariate random vector (Y, Z) have joint pmf given by

$$f(y, z|\lambda_1, \lambda_2) = \frac{e^{-\lambda_2}}{(z-y)! y!} \lambda_1^y (\lambda_2 - \lambda_1)^{z-y} I_{\{0,1,\dots,z\}}(y) I_{\{0,1,\dots\}}(z).$$

Note that $Y \sim \text{Poisson}(\lambda_1)$, $Z \sim \text{Poisson}(\lambda_2)$, and $Y|Z \sim \text{Binomial}(Z, \lambda_1/\lambda_2)$. Assume that a random sample of size *n* from this joint pmf, $(Y_1, Z_1), \ldots, (Y_n, Z_n)$, is available to make inference on (λ_1, λ_2) .

- (a) Show that $(s,t) = (\sum_{i=1}^{n} y_i, \sum_{i=1}^{n} z_i)$, is a *complete* and *sufficient* statistic.
- (b) Find the MLE of $\theta = \lambda_1 / \lambda_2$.
- (c) For $\theta = \lambda_1 / \lambda_2$, construct the (asymptotic) size α LRT of $H_0: \theta = 1/2$ vs. $H_1: \theta \neq 1/2$.
- (d) Find a $(1-\alpha)100\%$ confidence interval for $\lambda_2 \lambda_1$ using a convenient asymptotic pivotal quantity.