Probability and Statistics Preliminary Examination: May 2015

Instructions:

- Work all 6 Problems. Neither calculators nor electronic devices of any kind are allowed. Clearly state any theorem or fact that you use. Each of the 6 Problems is equally weighted (but the parts within a Problem may not be).
- Abbreviations/Acronyms.
 - pmf (probability mass function); pdf (probability density function); cdf (cumulative distribution function); mgf (moment generating function); iid (independent and identically distributed).
 - MSE (mean squared error), MOME (method of moments estimator); MLE (maximum likelihood estimator); PBE (posterior Bayes estimator); UMVUE (uniform minimum variance unbiased estimator); UMP (uniformly most powerful); LRT (likelihood ratio test).
- Notation.
 - $-I(x \in A)$ or $I_A(x)$: indicator function for set A; takes on the value 1 if $x \in A$ and 0 otherwise.
 - $-\mathbb{E}(X)$: expectation of random variable X.
 - $\mathbb{V}(X)$: variance of random variable X.
 - $X \sim N(a, b)$: X has a normal distribution with mean a and variance b.
- Common distributions and other results.

Poisson(λ): $\mathbb{E}(X) = \lambda$, $\mathbb{V}(X) = \lambda$, and pmf and mgf given respectively by

$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!} I(x \in \{0, 1, \dots\}), \qquad M(t) = \exp\{\lambda(e^t - 1)\}$$

Geometric(p): $\mathbb{E}(X) = 1/p$, $\mathbb{V}(X) = (1-p)/p^2$, and pmf and mgf given respectively by

$$f(x) = p(1-p)^{x-1} I(x \in \{1, 2, \dots\}), \qquad M(t) = \frac{pe^t}{1 - (1-p)e^t}, \quad t < -\log(1-p)$$

Negative-Binomial(r, p): $\mathbb{E}(X) = r(1-p)/p$, $\mathbb{V}(X) = r(1-p)/p^2$, and pmf and mgf, respectively:

$$f(x) = \binom{r+x-1}{x} p^r (1-p)^x I(x \in \{0, 1, \dots\}), \qquad M(t) = \left(\frac{p}{1-(1-p)e^t}\right)^r, \quad t < -\log(1-p)e^t$$

Gamma (α, β) : $\mathbb{E}(X) = \alpha \beta$, $\mathbb{V}(X) = \alpha \beta^2$, and pdf and mgf given respectively by

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} I(x>0), \qquad M(t) = \left(\frac{1}{1-\beta t}\right)^{\alpha}, \quad t < 1/\beta$$

Order Statistics: Let $X_{(1)} \leq \cdots \leq X_{(n)}$ denote the order statistics from a random sample X_1, \ldots, X_n . If X_1 is continuous with pdf f(x) and cdf F(x), the pdf of $X_{(j)}, (X_{(i)}, X_{(j)})$, and $(X_{(1)}, \ldots, X_{(n)})$, are given by:

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} [F(x)]^{j-1} [1 - F(x)]^{n-j} f(x) I(-\infty < x < \infty)$$

$$f_{X_{(i)},X_{(j)}}(x_i,x_j) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} f(x_i)f(x_j)[F(x_i)]^{i-1}[F(x_j)-F(x_i)]^{j-1-i}[1-F(x_j)]^{n-j} \\ \times I(-\infty < x_i \le x_j < \infty) \\ f_{X_{(1)},\dots,X_{(n)}}(x_1,\dots,x_n) = n!f(x_1)\cdots f(x_n)I(-\infty < x_1 \le \dots \le x_n < \infty)$$

- 1. Recall that there are 52 cards in a standard deck, with 4 cards for each denomination. Suppose that you flip over the top 4 cards. This constitutes the first draw from the deck. Discard those cards that are not a 2 and redraw new cards from the remaining deck so that you again have 4 cards flipped over. Continue doing this until all 4 cards are a 2. Let X denote the number of draws made and Y_j denote the number of cards drawn on draw j.
 - (a) Calculate P(X = 3).
 - (b) Derive the pmf of Y_2 .
 - (c) Derive the pmf of $Y_2|X \ge 3$.

- 2. Let X be a random variable from a *contaminated normal* distribution. That is, let $B \sim \text{Bernoulli}(p)$. Then $X|B = 0 \sim N(\mu, \tau^2)$ and $X|B = 1 \sim N(\mu, \sigma^2)$.
 - (a) Derive the pdf for X
 - (b) Calculate $\mathbb{E}(X)$ and $\mathbb{V}(X)$.
 - (c) Derive an expression for P(B = 1 | X = x).
 - (d) Calculate Cov(X, B). Are X and B independent? Justify your answer.

- 3. Let X_1, \ldots, X_n (n > 4) be independent random variables such that $X_i \sim N(i, i)$ for $i = 1, \ldots, n$. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ be the sample mean.
 - (a) Calculate $\mathbb{E}(\overline{X})$ and $\mathbb{V}(\overline{X})$. Describe the behavior of both of these quantities as $n \to \infty$.
 - (b) Determine the distribution of

$$\frac{2(X_1 + X_2 - X_3)}{\sqrt{6}(X_4 - 4)}$$

(c) Calculate the probability that X_n is not the largest observation in the sample. This probability should be expressed in terms of $\Phi(\cdot)$, the cdf of the standard normal distribution.

4. Let $(X_1, Y_1) \dots (X_n, Y_n)$ be iid random vectors from the pdf:

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(\frac{-1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2)\right)$$

- (a) Find a minimal sufficient statistic for ρ .
- (b) Show that the MLE may be found as a solution to the following equation:

$$0 = \rho^3 - \rho^2 \frac{\sum_{i=1}^n x_i y_i}{n} - \rho \frac{n - \sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2}{n} - \frac{\sum_{i=1}^n x_i y_i}{n}$$

- (c) Is $(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} Y_i)$ a sufficient statistic for ρ ? Why or why not?
- (d) Are \overline{X} and \overline{Y} (separately) ancillary statistics for ρ ? Why or why not?
- 5. Let X_1, \ldots, X_n (n > 2) be a random sample from a distribution with $\mathbb{E}(X_1) = \mu < \infty$ and $\mathbb{V}(X_1) = \sigma^2 < \infty$. Define the following estimators for μ .

$$\overline{X}_t = \frac{\sum_{i=2}^{n-1} X_{(i)}}{n-2}, \quad \tilde{\mu}_n = \frac{1}{a} X_1 + \frac{c}{n-2} \sum_{i=2}^{n-1} X_i + \frac{1}{a} X_n,$$

where a > 0 and c are constants.

- (a) Calculate $\mathbb{E}(\overline{X}_t)$.
- (b) Under what conditions is \overline{X}_t an unbiased estimator of μ ?
- (c) Determine the value of c for which $\tilde{\mu}_n$ is an unbiased estimator of μ .
- (d) If a = 2, determine whether $\tilde{\mu}_n$ is a consistent estimator for μ .
- (e) Find the value of a that minimizes $\mathbb{V}(\tilde{\mu}_n)$.
- 6. Let X_1, X_2 , and X_3 be random variables from the following joint pmf:

$$f_{X_1,X_2,X_3}(x_1,x_2,x_3) = \frac{n!}{x_1!x_2!x_3!} p_1^{x_1} p_2^{x_2} p_3^{x_3},$$

with $0 \le x_i \le n$ for i = 1, 2, 3, $\sum_{i=1}^3 x_i = n$, and $0 \le p_i \le 1$ for i = 1, 3, and $\sum_{i=1}^3 p_i = 1$.

- (a) Find the MLEs for p_1 and p_2 .
- (b) Give the test statistic and rejection region for an asymptotic level α LRT of $H_0: p_1 = p_2$ vs. $H_1: p_1 \neq p_2$.
- (c) Conditional on $X_3 = x_3$, construct an asymptotic level $100(1-\alpha)\%$ confidence interval for $\frac{p_1}{p_1+p_2}$.