Probability and Statistics Preliminary Examination: May 2018

Instructions:

- Work all 8 Problems. Neither calculators nor electronic devices of any kind are allowed. Clearly state any theorem or fact that you use. Problems 3-8 are equally weighted, while problems 1-2 carry *half* the weight of problems 3-8. Parts within a problem are not necessarily equally weighted.
- Abbreviations/Acronyms.
 - pmf (probability mass function); pdf (probability density function); cdf (cumulative distribution function); mgf (moment generating function); iid (independent and identically distributed).
 - MSE (mean squared error), MOME (method of moments estimator); MLE (maximum likelihood estimator); PBE (posterior Bayes estimator); UMVUE (uniform minimum variance unbiased estimator); UMP (uniformly most powerful); LRT (likelihood ratio test).
- Notation.
 - $-\mathbb{P}(\cdot)$: probability.
 - $-I_{[x\in A]}$ or $I_A(x)$: indicator function for set A; takes on the value 1 if $x \in A$ and 0 otherwise.
 - $-\mathbb{E}(X)$: expectation of random variable X.
 - $\mathbb{V}(X)$: variance of random variable X.
 - $X \sim N(a, b)$: X has a normal distribution with mean a and variance b.
- Common distributions and other results.

Poisson(λ): $\mathbb{E}(X) = \lambda$, $\mathbb{V}(X) = \lambda$, and pmf and mgf given respectively by

$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!} I(x \in \{0, 1, \dots\}), \qquad M(t) = \exp\{\lambda(e^t - 1)\}$$

Geometric(p): $\mathbb{E}(X) = 1/p$, $\mathbb{V}(X) = (1-p)/p^2$, and pmf and mgf given respectively by

$$f(x) = p(1-p)^{x-1} I(x \in \{1, 2, \dots\}), \qquad M(t) = \frac{pe^t}{1 - (1-p)e^t}, \quad t < -\log(1-p)$$

Negative-Binomial(r, p): $\mathbb{E}(X) = r(1-p)/p$, $\mathbb{V}(X) = r(1-p)/p^2$, and pmf and mgf, respectively:

$$f(x) = \binom{r+x-1}{x} p^r (1-p)^x I(x \in \{0, 1, \dots\}), \qquad M(t) = \left(\frac{p}{1-(1-p)e^t}\right)^r, \quad t < -\log(1-p)e^t$$

Gamma (α, β) : $\mathbb{E}(X) = \alpha\beta$, $\mathbb{V}(X) = \alpha\beta^2$, and pdf and mgf given respectively by

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} I(x>0), \qquad M(t) = \left(\frac{1}{1-\beta t}\right)^{\alpha}, \quad t < 1/\beta$$

Order Statistics: Let $X_{(1)} \leq \cdots \leq X_{(n)}$ denote the order statistics from a random sample X_1, \ldots, X_n . If X_1 is continuous with pdf f(x) and cdf F(x), the pdf of $X_{(j)}, (X_{(i)}, X_{(j)})$, and $(X_{(1)}, \ldots, X_{(n)})$, are given by:

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} [F(x)]^{j-1} [1 - F(x)]^{n-j} f(x) I(-\infty < x < \infty)$$

$$f_{X_{(i)},X_{(j)}}(x_i,x_j) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} f(x_i)f(x_j)[F(x_i)]^{i-1}[F(x_j)-F(x_i)]^{j-1-i}[1-F(x_j)]^{n-j} \\ \times I(-\infty < x_i \le x_j < \infty) \\ f_{X_{(1)},\dots,X_{(n)}}(x_1,\dots,x_n) = n!f(x_1)\cdots f(x_n)I(-\infty < x_1 \le \dots \le x_n < \infty)$$

- 1. A closet contains 13 different pairs of gloves. The 26 gloves are randomly arranged into 13 pairs.
 - (a) Find the probability that all left-hand gloves are paired with right-hand gloves (not necessarily matching).
 - (b) Find the probability that all of the gloves are arranged so that each left-hand glove is paired with its matching right-hand glove.
- 2. Suppose that $X \sim \text{Gamma}(\alpha, 1)$ where α is a positive integer. Further suppose that α has a Geometric(p) prior disribution. Find the posterior distribution of α given X = x.
- 3. Suppose that (X, Y) is a continuous bivariate random vector with joint pdf given by:

$$f(x,y) = \begin{cases} 2e^{-x-y}, & 0 < x < y < \infty; \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find $\mathbb{P}(X + Y < 1)$.
- (b) Find the marginal pdf of X, $f_X(x)$.
- (c) Find the conditional distribution of Y|X = x, where x > 0.
- (d) Find the distribution of U = X + Y. (Hint: Let V = X.)
- 4. Let $X_n, n = 1, 2, ...$ be a sequence of discrete random variables such that for each $n, \mathbb{P}\left(X_n = \frac{1}{n}\right) = \frac{n+1}{5n}$ and $\mathbb{P}\left(X_n = 1 - \frac{1}{n}\right) = \frac{4n-1}{5n}$.
 - (a) Calculate the moment generating function of X_n .
 - (b) Find the limiting distribution of X_n as $n \to \infty$.
- 5. Suppose that $Y_i = \beta x_i + \varepsilon_i, i = 1, ..., n$, where
 - x_i are known constants,
 - $\varepsilon_1, \ldots, \varepsilon_n$ is a N(0, σ^2) random sample,
 - σ^2 is a known constant, and
 - β is a N(θ , δ^2) random variable.
 - (a) Show that $\sum_{i=1}^{n} Y_i x_i$ is a sufficient statistic for β .
 - (b) Let $Q = \frac{\sum_{i=1}^{n} Y_i x_i}{\sum_{j=1}^{n} x_j^2}$. Find the distribution of $Q|\beta$. (Note that Q is the MLE of β , which is a fact you are not being asked to prove.)
 - (c) Find the posterior distribution of β given Q = q.

6. Let X_1, \ldots, X_n be an iid random sample from a N(μ, σ^2) population. (Note that $\mathbb{E}\left[(X_i - \mu)^4\right] = 3\sigma^4$, and that $\mathbb{E}(Q^m) = 2^m \frac{\Gamma(m+k/2)}{\Gamma(k/2)}$ for Q having a chi-squared distribution with k degrees of freedom and m a positive integer.)

- (a) Find the UMVUE for σ^4 .
- (b) Calculate the Cramér-Rao Lower Bound for the estimator found in (a).
- (c) Does the estimator found in (a) attain the Cramér-Rao Lower Bound? Justify your answer.

- 7. Let X_1, \ldots, X_n be a random sample from a continuous Uniform (α, β) population such that $\alpha < 0 < \beta$.
 - (a) Find the MLEs of α and β .
 - (b) Consider testing $H_0: \beta = -\alpha$ versus $H_1: \beta \neq -\alpha$. Find the LRT test statistic, and give the form of the rejection region for the LRT.
- 8. Let X_1, \ldots, X_n be a random sample from the density given by:

$$f(x|\theta) = \begin{cases} e^{-(x-\theta)}, & x > \theta; \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Prove that the MLE of θ is $\hat{\theta}_n = X_{(1)}$.
- (b) Show that $\hat{\theta}_n$ is a consistent estimator of θ .
- (c) Construct the UMP level- α test of $H_0: \theta = 4$ versus $H_1: \theta > 4$ based on X_1, \ldots, X_n .