Probability and Statistics Preliminary Examination: August 2023

Instructions:

- Work all 5 Problems. Neither calculators nor electronic devices of any kind are allowed. Clearly state any theorem or fact that you use. Each of the 5 Problems is equally weighted (but the parts within a Problem may not be).
- Abbreviations/Acronyms.
 - pmf (probability mass function); pdf (probability density function); cdf (cumulative distribution function); mgf (moment generating function); iid (independent and identically distributed).
 - MSE (mean squared error), MOME (method of moments estimator); MLE (maximum likelihood estimator); PBE (posterior Bayes estimator); UMVUE (uniform minimum variance unbiased estimator); UMP (uniformly most powerful); LRT (likelihood ratio test).
- Notation.
 - $-I(x \in A)$ or $I_A(x)$: indicator function for set A; takes on the value 1 if $x \in A$ and 0 otherwise.
 - $-\mathbb{E}(X)$: expectation of random variable X.
 - $\mathbb{V}(X)$: variance of random variable X.
 - $-X \sim N(a,b)$: X has a normal distribution with mean a and variance b.
- Common distributions and other results.

Bin(n,p): $\mathbb{E}(X) = np$, $\mathbb{V}(X) = np(1-p)$, and pmf and mgf given respectively by

$$f(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} I(x \in \{0, 1, \dots, n\}), \qquad M(t) = (1-p+pe^t)^n$$

Unif(a,b): $\mathbb{E}(X) = (a+b)/2$, $\mathbb{V}(X) = (b-a)^2/12$, and pdf given by

$$f(x) = (b - a)^{-1}I(a < x < b)$$

Poisson(λ): $\mathbb{E}(X) = \lambda$, $\mathbb{V}(X) = \lambda$, and pmf and mgf given respectively by

$$f(x) = \frac{e^{-\lambda}\lambda^x}{r!}I(x \in \{0, 1, \dots\}), \qquad M(t) = \exp\{\lambda(e^t - 1)\}$$

Geometric(p): $\mathbb{E}(X) = 1/p$, $\mathbb{V}(X) = (1-p)/p^2$, and pmf and mgf given respectively by

$$f(x) = p(1-p)^{x-1}I(x \in \{1, 2, \dots\}), \qquad M(t) = \frac{pe^t}{1 - (1-p)e^t}, \quad t < -\log(1-p)$$

Negative-Binomial(r, p): $\mathbb{E}(X) = r(1-p)/p$, $\mathbb{V}(X) = r(1-p)/p^2$, and pmf and mgf, respectively:

$$f(x) = \binom{r+x-1}{x} p^r (1-p)^x I(x \in \{0,1,\cdots\}), \qquad M(t) = \left(\frac{p}{1-(1-p)e^t}\right)^r, \quad t < -\log(1-p)$$

Gamma (α, β) : $\mathbb{E}(X) = \alpha \beta$, $\mathbb{V}(X) = \alpha \beta^2$, and pdf and mgf given respectively by

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta} I(x > 0), \qquad M(t) = \left(\frac{1}{1 - \beta t}\right)^{\alpha}, \quad t < 1/\beta$$

 $\mathbf{Exp}(\beta)$: Gamma $(1,\beta)$.

$$\mathbf{Beta}(\alpha,\beta)$$
: $\mathbb{E}(X) = \frac{\alpha}{\alpha+\beta}$, $\mathbb{V}(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$, and pdf given by

$$f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} I(0 < x < 1)$$

Order Statistics: Let $X_{(1)} \leq \cdots \leq X_{(n)}$ denote the order statistics from a random sample X_1, \ldots, X_n . If X_1 is continuous with pdf f(x) and cdf F(x), the pdf of $X_{(j)}, (X_{(i)}, X_{(j)})$, and $(X_{(1)}, \ldots, X_{(n)})$, are given by:

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} [F(x)]^{j-1} [1 - F(x)]^{n-j} f(x) I(-\infty < x < \infty)$$

$$f_{X_{(i)},X_{(j)}}(x_i,x_j) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} f(x_i)f(x_j)[F(x_i)]^{i-1}[F(x_j)-F(x_i)]^{j-1-i}[1-F(x_j)]^{n-j} \times I(-\infty < x_i \le x_j < \infty)$$

$$f_{X_{(1)},\dots,X_{(n)}}(x_1,\dots,x_n) = n! f(x_1) \cdots f(x_n) I(-\infty < x_1 \le \dots \le x_n < \infty)$$

- 1. Answer the following questions.
 - (a) Let X and Y be two independent continuous random variables. Prove that

$$P(X < Y) = \int_{-\infty}^{\infty} F_X(t) f_Y(t) dt.$$

Here F_X is the cdf of X, and f_Y is the pdf of Y.

(b) Find $P(X_3 > \min\{X_1, X_2\})$, where X_1, X_2, X_3 are i.i.d $Exp(\beta)$. (Note: $Exp(\beta)$ is the exponential distribution with mean β .)

2. Suppose X_1, \dots, X_n are i.i.d with uniform distribution $Unif(-\theta, \theta)$ with $\theta > 0$. Assume that the prior distribution of θ is Unif(1,2). Find the Bayesian estimator of θ .

- 3. Let X_1, \ldots, X_n be i.i.d observations such that $\log(X_i) \sim N(\theta, \theta)$. Here log is the natural logarithm.
 - (a) Find the MLE of θ .
 - (b) Show that the MLE is consistent.

4. Let $X \sim Unif(a,b)$ with $0 < a < b < \infty$. Given X = x, the conditional distribution of $Y \sim Exp(x)$. Find the distribution of Y/X. (Note: $Exp(\beta)$ is the exponential distribution with mean β .)

- 5. Let X_1, \ldots, X_n be i.i.d observations from $Unif(0, \theta)$. Consider the following two hypotheses, $H_0: \theta = 1$ V.S. $H_1: \theta > 1$.
 - (a) Consider the test: reject H_0 if $\max\{X_1,\ldots,X_n\}>c$. Find the value of c such that the test has size α .
 - (b) Find the power function of the test in (a).