Probability and Statistics Preliminary Examination: May 2023

Instructions:

- Work all 5 Problems. Neither calculators nor electronic devices of any kind are allowed. Clearly state any theorem or fact that you use. Each of the 5 Problems is equally weighted (but the parts within a Problem may not be).
- Abbreviations/Acronyms.
- pmf (probability mass function); pdf (probability density function); cdf (cumulative distribution function); mgf (moment generating function); iid (independent and identically distributed).
- MSE (mean squared error), MOME (method of moments estimator); MLE (maximum likelihood estimator); PBE (posterior Bayes estimator); UMVUE (uniform minimum variance unbiased estimator); UMP (uniformly most powerful); LRT (likelihood ratio test).
- Notation.
$-I(x \in A)$ or $I_{A}(x)$: indicator function for set A; takes on the value 1 if $x \in A$ and 0 otherwise.
$-\mathbb{E}(X)$: expectation of random variable X.
$-\mathbb{V}(X)$: variance of random variable X.
- $X \sim \mathrm{~N}(a, b): X$ has a normal distribution with mean a and variance b.
- Common distributions and other results.
$\operatorname{Bin}(n, p): \mathbb{E}(X)=n p, \mathbb{V}(X)=n p(1-p)$, and pmf and mgf given respectively by

$$
f(x)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} I(x \in\{0,1, \cdots, n\}), \quad M(t)=\left(1-p+p e^{t}\right)^{n}
$$

$\operatorname{Poisson}(\lambda): \mathbb{E}(X)=\lambda, \mathbb{V}(X)=\lambda$, and pmf and mgf given respectively by

$$
f(x)=\frac{e^{-\lambda} \lambda^{x}}{x!} I(x \in\{0,1, \cdots\}), \quad M(t)=\exp \left\{\lambda\left(e^{t}-1\right)\right\}
$$

$\operatorname{Geometric}(p): \mathbb{E}(X)=1 / p, \mathbb{V}(X)=(1-p) / p^{2}$, and pmf and mgf given respectively by

$$
f(x)=p(1-p)^{x-1} I(x \in\{1,2, \cdots\}), \quad M(t)=\frac{p e^{t}}{1-(1-p) e^{t}}, \quad t<-\log (1-p)
$$

Negative-Binomial $(r, p): \mathbb{E}(X)=r(1-p) / p, \mathbb{V}(X)=r(1-p) / p^{2}$, and pmf and mgf, respectively:

$$
f(x)=\binom{r+x-1}{x} p^{r}(1-p)^{x} I(x \in\{0,1, \cdots\}), \quad M(t)=\left(\frac{p}{1-(1-p) e^{t}}\right)^{r}, \quad t<-\log (1-p)
$$

$\operatorname{Gamma}(\alpha, \beta): \mathbb{E}(X)=\alpha \beta, \mathbb{V}(X)=\alpha \beta^{2}$, and pdf and mgf given respectively by

$$
f(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta} I(x>0), \quad M(t)=\left(\frac{1}{1-\beta t}\right)^{\alpha}, \quad t<1 / \beta
$$

$\boldsymbol{\operatorname { E x p }}(\beta): \operatorname{Gamma}(1, \beta)$.
$\operatorname{Beta}(\alpha, \beta): \mathbb{E}(X)=\frac{\alpha}{\alpha+\beta}, \mathbb{V}(X)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$, and pdf given by

$$
f(x)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1} I(0<x<1)
$$

Order Statistics: Let $X_{(1)} \leq \cdots \leq X_{(n)}$ denote the order statistics from a random sample X_{1}, \ldots, X_{n}. If X_{1} is continuous with pdf $f(x)$ and $\operatorname{cdf} F(x)$, the pdf of $X_{(j)},\left(X_{(i)}, X_{(j)}\right)$, and $\left(X_{(1)}, \ldots, X_{(n)}\right)$, are given by:

$$
\begin{gathered}
f_{X_{(j)}}(x)=\frac{n!}{(j-1)!(n-j)!}[F(x)]^{j-1}[1-F(x)]^{n-j} f(x) I(-\infty<x<\infty) \\
f_{X_{(i)}, X_{(j)}}\left(x_{i}, x_{j}\right)=\frac{n!}{(i-1)!(j-1-i)!(n-j)!} f\left(x_{i}\right) f\left(x_{j}\right)\left[F\left(x_{i}\right)\right]^{i-1}\left[F\left(x_{j}\right)-F\left(x_{i}\right)\right]^{j-1-i}\left[1-F\left(x_{j}\right)\right]^{n-j} \\
\quad \times I\left(-\infty<x_{i} \leq x_{j}<\infty\right) \\
f_{X_{(1)}, \ldots, X_{(n)}}\left(x_{1}, \ldots, x_{n}\right)=n!f\left(x_{1}\right) \cdots f\left(x_{n}\right) I\left(-\infty<x_{1} \leq \cdots \leq x_{n}<\infty\right)
\end{gathered}
$$

1. Let the joint pdf of X and Y be

$$
f(x, y)= \begin{cases}2 & \text { if } x>0, y>0, x+y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the pdf of X / Y.
2. Suppose that X_{1}, \ldots, X_{m} has a multinomial distribution with pmf given by

$$
f\left(x_{1}, \ldots, x_{m} \mid p_{1}, \ldots, p_{m}\right)=\frac{n!}{x_{1}!\ldots x_{m}!} p_{1}^{x_{1}} \ldots p_{m}^{x_{m}}
$$

Here $0 \leq x_{i} \leq n, \sum_{i=1}^{m} x_{i}=n$, and $\sum_{i=1}^{n} p_{i}=1$.
(a) Find a likelihood ratio test (LRT) statistic for the hypotheses $H_{0}: p_{1}=p_{2}=\ldots=p_{m}=\frac{1}{m}$ V.S. $H_{1}: H_{0}$ is false.
(b) Find the asymptotic size α rejection region based on the LRT statistic in (a).
3. Suppose X_{1}, \cdots, X_{n} are i.i.d with uniform distribution $\operatorname{Unif}(-\theta, \theta)$ with $\theta>0$.
(a) Find the MLE $\widehat{\theta}$ of θ.
(b) Find the distribution of $\hat{\theta} / \theta$.
(c) Using the exact distribution in (2), find the value of m such that $[\widehat{\theta}, m \widehat{\theta}]$ is a $1-\alpha$ confidence interval for θ.
4. Let X_{1}, \ldots, X_{n} be independent random variables from $\operatorname{Bin}(1, \theta)$ with $\theta \in(0,1)$. Let $T=\sum_{i=1}^{n} X_{i}$.
(a) Find the conditional pmf of X_{i} given $T=t$.
(b) Find the UMVUE of $\theta(1-\theta)$.
5. Let X_{1}, \ldots, X_{n} be i.i.d observations from $\operatorname{Pois}(\lambda)$ with $\lambda>0$. Let us define

$$
T=\sum_{i=1}^{n} X_{i}, \quad W=(1-1 / n)^{T}, \quad \tau(\lambda)=e^{-\lambda}
$$

(a) Show that W is an unbiased estimator of $\tau(\lambda)$.
(b) Calculate the variance of W.
(c) Is W a UMVUE? Prove or disprove.

