REAL ANALYSIS QUALIFYING EXAMINATION

TEXAS TECH UNIVERSITY 1996

Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded.

- 1. Let f be an integrable function on a measure space (X,\mathfrak{M},μ) with $\mu(X)<\infty$. Show that if $\int_E f d\mu \leq \mu(E)$ for all $E\in\mathfrak{M}$ then $f\leq 1$ almost everywhere.
- 2. Let (X, \mathfrak{M}, μ) be a σ -finite measure space. Let $T \subset \mathbb{R}$ be open and let $f: X \times T \to \mathbb{R}$ be a map satisfying:
 - i) For each $t \in T$ the map $x \mapsto f(x,t)$ is in $L^1(X,\mu)$.
 - ii) For each x, the map $f_x: t \mapsto f(x,t)$ is continuously differentiable on T

iii)

$$\frac{\partial f(x,t)}{\partial t} \in L^1(X,\mu)$$

for all $t \in T$ and there exist $g \in L^1(X, \mu)$ with q > 0 and

$$\left|\frac{\partial f(x,t)}{\partial t}\right| \le g(x)$$

for all $(x,t) \in X \times T$.

Prove that the function

$$\Phi(t) = \int_X f(x,t) d\mu(x)$$

is differentiable and that

$$\Phi'(t) = \int_X \frac{\partial f(x,t)}{\partial t} d\mu(x).$$

- 3. Let H, \langle , \rangle be a Hilbert Space and $A: H \to H$ a bounded linear operator. Show that there is a unique linear operator $A^*: H \to H$ such that $\langle Ax, y \rangle = \langle x, A^*y \rangle$ for all $x, y \in H$. Show that $||A|| = ||A^*||$.
- 4. Let μ_1 and ν_1 be σ -finite measures on (X_1, \mathfrak{M}_1) and let μ_2 and ν_2 be σ -finite measures on (X_2, \mathfrak{M}_2) such that $\nu_1 << \mu_1$ and $\nu_2 << \mu_2$. Show that $\nu_1 \times \nu_2 << \mu_1 \times \mu_2$ and that

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{d\nu_1}{d\mu_1}(x_1) \frac{d\nu_2}{d\mu_2}(x_2)$$

5. Let K(x,y) be a continuous function on the unit square $[0,1] \times [0,1]$. Let $C^0([0,1])$ be the Banach space of continuous functions on [0,1] with the "sup norm". Define a linear operator $T: C^0([0,1]) \to C^0([0,1])$ by

$$Tg(x) = \int_0^1 K(x, t)g(t)dt.$$

- a) Show that T is continuous.
- b) Show that T is compact; that is, for every bounded sequence $\{f_n\} \subset C^0([0,1])$ the sequence $\{Tf_n\}$ has a convergent subsequence. Hint: Arzela- Ascoli.
- 6. State and prove the Baire Category Theorem.
- 7. Let m be Lebesgue measure on \mathbb{R}^n . For $f \in L^1(\mathbb{R}^n, m)$ define a function A_f on $(0, \infty) \times \mathbb{R}^n$ by

$$A_f(r,x) = \frac{1}{m(B(r,x))} \int_{B(r,x)} f(y) dm(y).$$

Show

- a) that $A_f(r,x)$ is continuous in r for each fixed $x \in \mathbb{R}^n$ and
- b) that $A_f(r, x)$ is measurable in x for each fixed r > 0.
- 8. Prove the following theorem (Egoroff's Theorem):

Theorem. Suppose $\mu(X) < \infty$, and that $f, f_n, n = 1, 2, ...$ are measurable functions and that $f_n \to f$ a.e. Then for every $\epsilon > 0$ there exists a measurable set $E \subset X$ such that $\mu(E) < \epsilon$ and such that $f_n \to f$ uniformly on $E^c = X - E$.

9. Let (X, \mathfrak{M}, μ) be a measure space with $\mu(X) < \infty$ and suppose a measurable function f is in $L^p(\mu)$ for all $p \geq 1$. Show that $f \in L^{\infty}$ and that

$$\lim_{p\to\infty} ||f||_p = ||f||_{\infty}.$$

Hint: You may find it useful to prove the inequalities " $\limsup_{p\to\infty} ||f||_p \le ||f||_{\infty}$ " and " $||f||_{\infty} \le \liminf_{p\to\infty} ||f||_p$ " separately.

10. Let $f \in L^p(\mathbb{R})$, where $p \geq 1$. Define $f_h(x) \equiv f(x+h)$. Show that $f_h \in L^p(\mathbb{R})$ and that $\lim_{h\to 0} ||f_h - f||_p = 0$.