Real Analysis Preliminary Examination

1997

Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded.

1. Let

$$f(x) = \begin{cases} e^{x^2} & \text{if } x \text{ is a rational number} \\ 0 & \text{if } x \text{ is an irrational number} \end{cases}.$$

- a. Show that f is Lebesgue measurable.
- b. Compute

$$\int_{\mathbf{R}} f(x) \ dx$$

- 2. Let $\mathcal{B}_{\mathbf{R}}$ be the Borel σ -algebra on \mathbf{R} . Show that every finite measure on $\mathcal{B}_{\mathbf{R}}$ is a Lebesgue-Stieltjes measure μ_F associated with some nondecreasing, right continuous function F.
- 3. Let f be a real-valued integrable function on a measure space (X, \mathcal{M}, μ) , and $\{E_i\}_{i=1}^{\infty}$ be measurable subsets of X such that

$$\mu(\bigcap_{i=1}^{\infty}E_i)=0.$$

Show that

$$\lim_{n\to\infty}\int_{\bigcap_{i=1}^n E_i}f\ d\mu=0.$$

4. Let $f_n \geq 0$, n = 1, 2, ..., be a sequence of nonnegative measurable functions on a measure space (X, \mathcal{M}, μ) such that $f_n \to f$ in measure. Show that

$$\int_X f \ d\mu \le \liminf \int_X f_n \ d\mu.$$

5. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be two σ -finite measure spaces, and f be a $\mu \times \nu$ -measurable function on $X \times Y$ such that

$$\int_Y \left[\int_X |f| \ d\mu \right] \ d\nu \le \infty.$$

Show that

a. f is integrable over the product measure $\mu \times \nu$.

Ъ.

$$\int_{X\times Y} f \ d(\mu\times\nu) = \int_Y \left[\int_X f \ d\mu\right] \ d\nu = \int_X \left[\int_Y f \ d\nu\right] \ d\mu.$$

- 6. Let ν be a signed measure on a measurable space (X, \mathcal{M}) and $X = P \cup N$ be a Hahn decomposition for ν .
 - a. Define the positive variation ν^+ , negative variation ν^- , and total variation $|\nu|$, of ν .
 - b. Show that

$$|\nu(E)| \le |\nu|(E)$$
 for each $E \in \mathcal{M}$,

c. Show that

$$|\nu(E)| = |\nu|(E)$$

if and only if either $\nu(E \cap P) = 0$ or $\nu(E \cap N) = 0$.

7. Let ν and μ be σ -finite positive measures on a measurable space (X, \mathcal{M}) with $\nu \ll \mu$. Show that the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$ of ν with respect to μ satisfies

$$\frac{d\nu}{d\mu} \ge 0$$
 μ -a.e.

8. Let X be a normed vector space, $\{x_n\} \subset X$, and $\{f_n\} \subset X^*$ be a sequence of continuous linear functionals on X. Show that if $f_n \to f \in X^*$ and $x_n \to x \in X$ then

$$f_n(x_n) \to f(x)$$
.

9. Let K(x,t) be a Lebesgue measurable function on ${\bf R}^2$ such that

$$M := (\iint_{\mathbb{R}^2} |K(x,t)|^2 dt dx)^{1/2} < \infty.$$

Show that the linear operator T defined by

$$T(f)(x) := \int_{\mathbf{R}} K(x,t)f(t) \ dt$$

is a bounded linear operator on $L^2(\mathbf{R})$ and

$$||T|| \leq M$$
.

10. Let H be a Hilbert space and S be any subset of H. Show that

$$S^{\perp} := \{ x \in H : \langle x, s \rangle = 0 \text{ for all } s \in S \}$$

is a closed subspace.