Real Analysis Preliminary Examination

2001

Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded. Notations: \mathbb{C} =the set of complex numbers, \mathbb{R} =the set of real numbers.

1. Let $S = \{E_1, E_2, \dots, E_n\}$ be a collection of nonempty subsets of X such that

$$\bigcup_{i=1}^n E_i = X \text{ and } E_i \cap E_j = \emptyset \text{ for } i \neq j.$$

Find the σ -algebra generated by \mathcal{S} .

2. For $x \in \mathbb{R}$, let |x| be the largest integer less than or equal to x. Let

$$F(x) = \begin{cases} 0, & \text{if } x \le 0 \\ |x|, & \text{if } x > 0 \end{cases},$$

and let μ_F be the Lebesgue-Stieltjes measure associated to F. Compute

$$\int 3^{-x} d\mu_F.$$

3. Let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ -algebra on \mathbf{R} , and μ be a measure on $\mathcal{B}_{\mathbb{R}}$ which is finite on every bounded set in $\mathcal{B}_{\mathbb{R}}$. Define

$$F(x) = \begin{cases} \mu((0, x]), & \text{if } x \ge 0 \\ -\mu((x, 0]), & \text{if } x < 0 \end{cases}$$

Show that

- a. F is increasing,
- b. F is right continuous,
- c. μ is the Lebesgue-Stieltjes measure associated to F.
- 4. Let f be a nonnegative measurable function on a measure space (X, \mathcal{M}, μ) , and

$$E_1 \subset E_2 \subset \cdots$$

be measurable subsets of X. Prove that

$$\int_{\bigcup_{n=1}^{\infty} E_n} f \ d\mu = \lim_{n \to \infty} \int_{E_n} f \ d\mu.$$

5. Let f_n , n = 1, 2, ..., be a sequence of integrable functions on a measure space (X, \mathcal{M}, μ) such that

$$\int |f_n| \ d\mu \le M < \infty \text{ for all } n$$

and $f_n \to f$ in measure. Prove that f is integrable and

$$\int |f| \ d\mu \le M.$$

6. Show that if a real series $\sum_{i,j=1}^{\infty} a_{ij}$ converges absolutely, then

$$\sum_{i,j=1}^{\infty} a_{ij} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$$

- 7. Let ν be a signed measure on a measurable space (X, \mathcal{M}) , and $X = P \cup N$ be a Hahn decomposition for ν . Prove that
 - a. $|\nu(E)| \leq |\nu|(E)$ for all E in \mathcal{M} ,
 - b. $|\nu(E)| = |\nu|(E)$ if and only if either $\nu(E \cap P) = 0$ or $\nu(E \cap N) = 0$.
- 8. Let \mathcal{X} and \mathcal{Y} be Banach spaces, $T: \mathcal{X} \to \mathcal{Y}$ be an injective bounded linear map, and \mathcal{M} be the range of T. Prove that $T: \mathcal{X} \to \mathcal{M}$ is an isomorphism if and only if \mathcal{M} is closed.
- 9. Show that in an inner product space over C,

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2)$$

and use it to prove that there is at most one inner product which generates the same induced norm, namely $||x|| = \sqrt{\langle x, x \rangle}$.

10. Let k(x,t) be a Lebesgue measurable function on \mathbb{R}^2 such that

$$\left(\iint |k(x,t)|^q \ dt dx\right)^{1/q} < \infty, \text{ for } 1 < q < \infty$$

and let p satisfy

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Define

$$T(f)(x) = \int k(x,t)f(t) dt.$$

Prove that T(f) is in $L^q(\mathbb{R})$ for every $f \in L^p(\mathbb{R})$, T is a bounded linear operator from $L^p(\mathbb{R})$ to $L^q(\mathbb{R})$ and

$$||T|| \le (\int \int |k(x,t)|^q dt dx)^{1/q}.$$