Real Analysis Preliminary Examination

August, 2004

Do 7 of the following 11 problems. You must clearly indicate which 7 are to be graded.

- Notation: \mathbb{R} = the set of real numbers. m = Lebesgue measure.
 - 1. A subset E of \mathbb{R} is called isolated if every $x \in E$ has a neighborhood N such that $E \cap N = \{x\}$. Prove that any isolated subset of \mathbb{R} is countable.
 - 2. Prove that if μ^* is an outer measure on X and $\{A_i\}_1^\infty$ is a sequence of disjoint measurable sets, then

$$\mu^*(E \cap (\bigcup_{j=1}^{\infty} A_j)) = \sum_{j=1}^{\infty} \mu^*(E \cap A_j)$$

for any $E \in X$.

- 3. Let μ_F be the Lebesgue-Stieltjes measure associated to a nondecreasing continuous function $F : \mathbb{R} \to \mathbb{R}$. Prove that if $E \subset \mathbb{R}$ is countable, then it is μ_F -measurable, and $\mu_F(E) = 0$.
- 4. Let f(x) be a Lebesgue integrable function on \mathbb{R} . Prove that the function

$$F(x) = \int_{-\infty}^{x} f \, dm$$

is continuous.

5. Let $C \subset [0,1]$ be the Cantor ternary set. Define $f(x) : \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x & \text{if } x \notin C \\ 0 & \text{if } x \in C. \end{cases}$$

Prove that f is Lebesgue measurable.

- 6. Let $|f_n| \leq g$ and $f_n \to f$ in measure. Prove that $|f| \leq g$ a.e. with respect to that measure.
- 7. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two σ -finite measure spaces, and f(x, y) be a nonnegative function on $X \times Y$ such that
 - i. for each fixed $x \in X$, f(x, y) is a ν -measurable function on Y, and
 - ii. the function $F(x) = \int_Y f(x, y) d\nu(y)$ is not μ -measurable.

Prove that f(x, y) is not $(\mu \times \nu)$ -measurable.

- 8. Prove that any bounded variation function F(x) on [a, b] can be written as F(x) = G(x) + H(x) where G(x) is absolutely continuous and H'(x) = 0 a.e. on [a, b] (with respect to the Lebesgue measure).
- 9. **a.** Prove the Parallelogram Law:

$$||f + g||^2 + ||f - g||^2 = 2(||f||^2 + ||g||^2)$$

for any f, g in a Hilbert space \mathcal{H} , where $||f|| = \sqrt{\langle f, f \rangle}$ is the induced norm.

b. Use **a.** to prove that $L^p(\mathbb{R}, m)$ is a Hilbert space if and only if p = 2.

10. Let p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$. Prove that for any $g \in L^q(\mathbb{R}, m)$ the functional $G: L^p(\mathbb{R}, m) \to \mathbb{R}$ defined by

$$G(f) = \int_{\mathbb{R}} f(x)g(x) \, dm$$

is a well defined bounded linear functional, and $||G|| = ||g||_q$.

11. Let \mathcal{X} and \mathcal{Y} be normed vector spaces and $T: \mathcal{X} \to \mathcal{Y}$ be a bounded linear map. Prove that

$$T^{-1}(\{0\}) := \{x \in \mathcal{X} : T(x) = 0\}$$

is a closed subspace of \mathcal{X} .