Real Analysis Preliminary Examination

August, 2005

Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded.

Notation: \mathbb{R} = the set of all real numbers; \mathbb{Q} = the set of all rational numbers; m = Lebesgue measure; E = the complement of E.

1. Let \mathbb{N} be the set of all integers, \mathbb{N}^+ be the set of all positive integers, and \mathbb{N}^- be the set of all negative integers. Starting with the map μ given by

$$\mu(\emptyset) = 0, \ \mu(\{x\}) = 1 \text{ for all } x \in \mathbb{N}, \ \mu(\mathbb{N}^+) = 1, \ \mu(\mathbb{N}^-) = 1$$

and using the Carathèodory extension, construct an outer measure μ^* on \mathbb{N} . Find all μ^* -measurable sets.

- 2. Let $E_0 = [0, 1]$, and E_n , n = 1, 2, ..., be the set obtained from E_{n-1} by removing middle open interval of length $1/5^n$ from each of the closed intervals of E_{n-1} . Let $E = \bigcap_{n=0}^{\infty} E_n$. Find m(E) and show that E is a closed set not containing any nonempty open intervals.
- 3. Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series (i.e. $\sum_{n=1}^{\infty} |a_n|$ converges). Prove that the sum of series is independent of the order of summation; i.e. prove that for any finite subsets $E_1 \subset E_2 \subset E_3 \subset \cdots \subset \mathbb{N}$ such that $\bigcup_{n=1}^{\infty} E_n = \mathbb{N}$, where \mathbb{N} is the set of all natural numbers, we have

$$\lim_{n \to \infty} \sum_{k \in E_n} a_k = \lim_{n \to \infty} \sum_{k=1}^n a_k.$$

4. Let $\{r_1, r_2, \ldots\}$ be a numeration of all rational numbers in [0, 1], and define a function F on \mathbb{R} by

r

$$F(x) = \begin{cases} 0 & \text{if } x < 0, \\ \sum_{r_n \le x} \frac{1}{2^n} & \text{if } x \ge 0. \end{cases}$$

Accept the fact without proof that F is nondecreasing, right-continuous. Let μ_F be the Lebesgue-Stieltjes measure defined by F, and

$$\phi(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q} \cap [0, 1], \\ 0, & \text{otherwise.} \end{cases}$$

Compute

 $\int_{[0,1]} \phi(x) \ d\mu_F$

and justify your answer.

5. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be two σ -finite measure spaces, and f be a $\mu \times \nu$ -measurable function on $X \times Y$ such that for almost all fixed y, the function $x \mapsto f(x, y)$ is an integrable function on X, and the function $y \mapsto \int_{X} |f(x, y)| d\mu$ is an integrable function on Y. Prove that

$$\int_{X \times Y} f \ d\mu \times \nu = \int_{Y} \left(\int_{X} f \ d\mu \right) \ d\nu = \int_{X} \left(\int_{Y} f \ d\nu \right) \ d\mu$$

- 6. Give an example of sequence of functions $\{f_n\}$ defined on [0, 1] such that $f_n \to 0$ in Lebesgue measure on [0, 1], but $f_n(x) \not\to 0$ for any $x \in [0, 1]$.
- 7. Let (X, \mathcal{M}) be a measurable space, and μ be a finite measure on \mathcal{M} . Prove that if $r > s \ge 1$ then

$$L^r(X,\mu) \subset L^s(X,\mu).$$

8. Assume f is integrable (with respect to Lebesgue measure) on [a, b] and

$$\int_{a}^{c} f(t) \, dt = 0$$

for any $c \in [a, b]$. Prove that f = 0 a.e. on [a, b].

- 9. Let \mathcal{B} be the Borel σ -algebra on \mathbb{R} , F be a nondecreasing, right-continuous function on \mathbb{R} , and μ_F be the Lebesgue-Stieltjes measure defined by F. Prove that $\mu_F \ll m$ on $(\mathbb{R}, \mathcal{B})$ if and only if F is absolutely continuous.
- 10. Let A be a one-to-one bounded linear operator from a Banach space X to a Banach space Y and $S \subset Y$ be the range of A. Prove that $A^{-1}: S \mapsto X$ is bounded if and only if S is closed in Y.