Real Analysis Preliminary Examination

May, 2005

Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded. Notation: \mathbb{R} = the set of all real numbers; \mathbb{Q} = the set of all rational numbers; m = Lebesgue measure; \tilde{E} = the complement of E.

1. Let $\mathcal{M} = \{E \subset \mathbb{R} : \text{either } E \text{ is countable or } \widetilde{E} \text{ is countable.}\}$ and μ be the measure on \mathcal{M} defined by

$$\mu(E) = \begin{cases} 0 & \text{if } E \text{ is countable,} \\ 1 & \text{if } \widetilde{E} \text{ is countable.} \end{cases}$$

Prove that a function f(x) defined on \mathbb{R} is μ -measurable if and only if there is a constant c such that f(x) = c for all but countably many x-values in \mathbb{R} .

2. Let f be an integrable function on a measure space (X, \mathcal{M}, μ) . Prove that if

$$\int_{E} f \ d\mu \leq 0 \text{ for all } E \in \mathcal{M}$$

then $f \leq 0$ μ -a.e.

- 3. A measure on the Borel σ -algebra \mathcal{B} is called a Baire measure if it is finite for bounded sets. Prove that μ is a Baire measure on \mathbb{R} if and only if it is a Lebesgue-Stieltjes measure defined by a nondecreasing, right-continuous function F.
- 4. Give an example of measure spaces (X, \mathcal{M}, μ) , (Y, \mathcal{N}, ν) , and a non-negative measurable function on $X \times Y$ such that

$$\int_{Y} \left(\int_{X} f \, d\mu \right) \, d\nu \neq \int_{X} \left(\int_{Y} f \, d\nu \right) \, d\mu.$$

- 5. Compute $\lim_{n \to \infty} \int_0^\infty \frac{x}{1+x^n} dx$. Justify your steps.
- 6. Let $f, g \in L^1(\mathbb{R})$. Show that

$$h(x) = \int_{-\infty}^{\infty} f(y)g(x-y) \, dy$$

is in $L^1(\mathbb{R})$. Justify your steps.

7. Let $x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}, a_n \in \{0, 1, 2\}$ be a ternary expansion of $x \in [0, 1]$, and f be the Cantor ternary function on [0, 1] defined by

$$f\left(\sum_{n=1}^{\infty} \frac{a_n}{3^n}\right) = \sum_{n=1}^{N-1} \frac{a_n/2}{2^n} + \frac{a_N}{2^N}$$

where

$$N = \begin{cases} \infty, & \text{if } a_n \neq 1 \text{ for all } n, \\ \min\{n : a_n = 1\}, & \text{otherwise.} \end{cases}$$

You may assume that f is well defined. Prove that f is a function of bounded variation on [0, 1], but not absolutely continuous.

- 8. Let ν be a signed measure on a measurable space (X, \mathcal{B}) . Prove that the Hahn decomposition $\nu = \nu^+ \nu^-$ is unique.
- 9. Let $1 \le p < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Prove that for any bounded linear operator $A : L^p[a, b] \to L^p[a, b]$, there is a unique bounded linear operator $A^* : L^q[a, b] \to L^q[a, b]$ with $||A^*|| \le ||A||$ such that

$$\int_{a}^{b} A(f)g \ dm = \int_{a}^{b} f A^{*}(g) \ dm$$

for all $f \in L^p[a, b]$ and $g \in L^q[a, b]$.

10. Let H be an inner product space over \mathbb{R} . Prove that $\{x_1, x_2, \ldots, x_n\} \subset H$ is an orthogonal system if and only if

$$|a_1x_1 + \dots + a_nx_n||^2 = ||a_1x_1||^2 + \dots + ||a_nx_n||^2$$

for any $a_1, \ldots, a_n \in \mathbb{R}$.