Real Analysis Preliminary Examination

August, 2007

Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded. Strive for clear and detailed solutions.

- 1. For a fixed $x_0 \in \mathbb{R}$, let $\mu(E) = \begin{cases} 1, & \text{if } x_0 \in E \\ 0, & \text{if } x_0 \notin E \end{cases}$
 - (a) Prove that μ is a measure on the σ -algebra $\mathcal{P}(\mathbb{R})$ of all subsets of \mathbb{R} .
 - (b) Find $\int f d\mu$ for a given function f defined on \mathbb{R} .
- 2. Prove or disprove: Every real-valued measurable function g on $\mathbb R$ which satisfies

$$m(\{x \in \mathbb{R} : |g(x)| > \alpha\}) < \frac{1}{\alpha^2}, \ \forall \alpha \in (0, \infty), \text{ is integrable on } \mathbb{R}.$$

- 3. Let (X, \mathcal{M}, μ) be a measure space and let $\{f_k\}_{k=1}^{\infty}$ be a sequence in $L^p(X, \mathcal{M}, \mu)$ such that $\sum_{k=1}^{\infty} ||f_k||_p < \infty$. Prove that $\sum_{k=1}^{\infty} f_k$ converges in the L^p norm.
- 4. Suppose $f \in L^p(X, \mathcal{M}, \mu)$ for all $1 \leq p < \infty$ and that there exists a constant $c \geq 0$ such that $||f||_p \leq c$ for all $1 \leq p < \infty$. Prove that $f \in L^{\infty}(X, \mathcal{M}, \mu)$.
- 5. Let ν be a signed measure on the measurable space (X, \mathcal{M}) and let $|\nu| = \nu^+ + \nu^-$, where $\nu = \nu^+ \nu^-$ is the Jordan Decomposition of ν . Prove that $|\nu|(E) = \sup \sum_{i=1}^n |\nu(E_i)|$, where the supremum is taken over all $\bigcup_{i=1}^n E_i = E$ with E_i pairwise disjoint.
- 6. Define a Borel measure μ on a topological space to be regular if each Borel set B has the following property: For each ε > 0, there exists an open set U and a closed set F such that F ⊂ B ⊂ U and μ(U \ F) < ε. Prove that if μ is a finite Borel measure on a metric space X, then μ is regular.</p>
 (Hint: Consider the class A of Borel sets which have the stated regularity property.)
- 7. Let $g:[a,b]\to\mathbb{R}$ be absolutely continuous and monotone. Prove that if $E\subset [a,b]$ with m(E)=0 then m(g(E))=0.
- 8. Suppose that ν is a σ -finite signed measure and μ is a σ -finite measures on (X, \mathcal{M}) such that $\nu \ll \mu$. If $g \in L^1(X, \mathcal{M}, \nu)$, prove that

$$g\frac{d\nu}{d\mu} \in L^1(X, \mathcal{M}, \mu) \text{ and } \int g \ d\nu = \int g\frac{d\nu}{d\mu} \ d\mu.$$

- 9. Let $T: H \to H$ be a bounded linear operator on a Hilbert space H. Prove that
 - (a) there exists a unique bounded linear operator T^* on H such that $\langle Tf,g\rangle=\langle f,T^*g\rangle$ for all $f,g\in H$ and
 - (b) $||T|| = ||T^*||$.

(Hint: for (b), first prove $||T|| = \sup\{|\langle Tf, g \rangle| : ||f|| \le 1, ||g|| \le 1\}.$)

10. Let $f \in L^1((0,a))$ and $g(x) = \int_x^a \frac{f(t)}{t} dt$ for 0 < x < a. Prove that $g \in L^1((0,a))$ and

$$\int_0^a g(x) \ dx = \int_0^a f(x) \ dx.$$