Real Analysis Preliminary Examination

May. 2007

Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded. Strive for clear and detailed solutions.

- 1. Let $0 \le f_n \le f$, where f_n and f are measurable functions and $\lim_{n \to \infty} f_n(x) = f(x)$ for every x. Prove that $\lim_{n \to \infty} \int f_n(x) = \int f(x)$.
- 2. Let (X, \mathcal{M}, μ) be a σ -finite measure space. Show that there are at most countably many $a \in X$ for which $\mu(\{a\}) > 0$.
- 3. a. Let B(X) denote the space of bounded complex-valued functions on the set X with the uniform metric $\rho(f,g) = \sup\{|f(x) g(x)| : x \in X\}$. Prove that B(X) is complete.
 - b. If X is a topological space, let BC(X) denote the space of bounded continuous complex-valued functions on X. Prove that BC(X) is a closed subspace of B(X).
- 4. Let $f \in L^2(\mathbb{R})$ with respect to Lebesgue measure. Prove that f can be represented in the form f = g + h, where $g \in L^1(\mathbb{R})$ and $h \in L^{\infty}(\mathbb{R})$.
- 5. Let $P=(0,\infty)$. Define a Borel measure μ on P by $\mu(B)=\int_{B}\frac{dx}{x}$. Let $f,g\in L^{1}(\mu)$.
 - a. Prove that the set

$$A = \{x \in P : t \mapsto f(x/t)g(t) \text{ is in } L^1(\mu)\}\$$

satisfies $\mu(P \setminus A) = 0$.

b. Prove that the function

$$h(x) = \begin{cases} \int_0^\infty f(x/t)g(t) \ d\mu(t), & x \in A \\ 0, & \text{otherwise} \end{cases}$$

is in $L^{1}(\mu)$.

(Note: You need not prove that f(x/t) is measurable.)

- 6. Let X and Y be Banach spaces. Let $\{T_n\}$ be a sequence of bounded linear operators from X to Y such that for each $x \in X$, $\lim_{n \to \infty} T_n(x)$ exists in Y. Define $T(x) = \lim_{n \to \infty} T_n(x)$. Prove that T is a bounded linear operator from X to Y.
- 7. A function $f:[a,b] \to \mathbb{R}$ is called Lipschitz if there exists M>0 such that $|f(x)-f(y)| \leq M|x-y|$ for all $x,y \in [a,b]$. Prove that f is Lipschitz if and only if it is absolutely continuous and f'(x) is bounded a.e. on [a,b].
- 8. a. State the Radon-Nikodym Theorem.
 - b. Prove it for σ -finite measures, assuming the result for finite measures. (Note: you need not prove uniqueness.)
- 9. Let $f:[a,b] \to \mathbb{R}$ be a Lebesgue integrable function, and let $\epsilon > 0$. Prove that there exists a polynomial p such that $\int_a^b |f(x) p(x)| dx < \epsilon$.
- 10. Let f be a real valued function on (0,1) and M>0.
 - a. Suppose that f is differentiable on (0,1) and $|f'| \leq M$. Prove that f is bounded.
 - b. Suppose that f is differentiable a.e. (w.r.t. Lebesgue measure) on (0,1) and $|f'| \leq M$ everywhere that f' is defined. Does it follow that f is bounded? Fully justify your answer.