## Real Analysis Preliminary Examination August, 2009

Do 7 of the following 9 problems. You must clearly indicate which 7 are to be graded. Strive for clear and detailed solutions.

- 1. Let  $(H, \langle -, \rangle)$  be a Hilbert space and  $A: H \to H$  be a bounded linear operator. Show that there is a unique bounded linear operator  $A^*: H \to H$  such that  $\langle Ax, y \rangle = \langle x, A^*y \rangle$  for all  $x, y \in H$ . Show that  $||A^*|| = ||A||$ .
- 2. Prove the following theorem (Egoroff's Theorem):

**Theorem:** Let  $(X, \mu)$  be a measure space with  $\mu(X) < \infty$ . Suppose that  $f, f_n, n = 1, 2, ...$  are measurable functions such that  $f_n \to f$  a.e. Then for every  $\epsilon > 0$  there exists a measurable set  $E \subset X$  such that  $\mu(E) < \epsilon$  and such that  $f_n \to f$  uniformly on  $E^c = X \setminus E$ .

- 3. Let m be Lebesgue measure on  $\mathbb{R}$ . Show that for  $f \in L^p(m)$ ,  $p \ge 1$ , we have that  $f_h \in L^p(m)$  where  $f_h(x) := f(x+h)$ . Show that  $\lim_{h\to 0} \|f-f_h\| = 0$ .
- 4. Show that if  $(f_n)_{n=1}^{\infty}$  is a sequence of measurable extended real valued functions on a measure space X, then the set  $\{x \in X : \lim_{n\to\infty} f_n(x) \text{ exists}\}$  is measurable.
- 5. For  $t \in \mathbb{R}$ , let [t] denote the greatest integer not exceeding t. Let F(t) := t + [t]. Find

$$\int_0^\infty e^{-t} dF.$$

- 6. State and prove the Closed Graph Theorem
- 7. Compute  $\lim_{n\to\infty} \int_0^\infty \frac{x}{1+x^n} dx$ . Justify all steps.
- 8. Give an example of measure spaces  $(X, M, \mu)$ ,  $(Y, N, \nu)$ , and a non-negative measurable function f defined on  $X \times Y$  such that

1

$$\int_{Y} \left( \int_{X} f(x, y) \, d\mu(x) \right) \, d\nu(y) \neq \int_{X} \left( \int_{Y} f(x, y) \, d\nu(y) \right) \, d\mu(x).$$

9. State and prove the Monotone Convegence Theorem for general measure spaces (use Fatou's Lemma).