## Real Analysis Preliminary Examination May. 2009

Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded. Strive for clear and detailed solutions.

1. Let f be a nonnegative function in  $L^1(m)$  where m is the Lebesgue measure on the real line  $\mathbb{R}$ . Show that the function g defined by

$$g(x) := \int_{(-\infty,x)} f \, dm$$

is a continuous function.

- 2. Let  $(X, \|\cdot\|_1)$  and  $(Y, \|\cdot\|_2)$  be normed vector spaces. Define what it means for a linear map from  $X \to Y$  to be bounded. Let L(X,Y) be the set of bounded linear maps from X to Y. Define the operator norm on L(X,Y) and show that if  $(Y, \|\cdot\|_2)$  is a Banach space then L(X, Y) is a Banach space (with the operator norm).
- 3. Let  $\{u_{\alpha}\}_{{\alpha}\in A}$  be an indexed orthonormal set in a Hilbert space  $(\mathcal{H},\langle\cdot,\cdot\rangle)$  where  $\langle\cdot,\cdot\rangle$  is conjugate linear in the second slot. Show that the following are equivalent:
  - a) If  $\langle x, u_{\alpha} \rangle = 0$  for all  $\alpha \in A$  then x = 0.
  - b) For each  $x \in \mathcal{H}$ ,  $x = \sum_{\alpha \in A} \langle x, u_{\alpha} \rangle u_{\alpha}$  where this sum has only countably many nonzero terms and the convergence is in the norm derived from  $\langle \cdot, \cdot \rangle$  and independent of the order of the nonzero terms. (You may use Bessel's Inequality.)
- 4. Let  $(X, \mathcal{M}, \mu)$  be a measure space and suppose that g is a non-negative measurable function on X. Show that
  - a)  $\nu(E) := \int_E g \, d\mu$  for  $E \in \mathcal{M}$  defines a measure on X (with domain  $\mathcal{M}$ ).
  - b) for f a non-negative measurable function on X we have  $\int_X f \ d\nu = \int_X f g \ d\mu$ .
- 5. Suppose that  $f:[0,1]\times[0,1]\to\mathbb{R}$  satisfies the following conditions:
  - a) f is bounded:

  - b) For each x, the map t → f(x,t) is measurable:
    c) The partial derivative ∂f/∂t exists everywhere and is bounded.

Show that

$$\frac{d}{dt} \int_{0}^{1} f(x,t) dx = \int_{0}^{1} \frac{\partial f}{\partial t}(x,t) dx$$

where the integral is the Lebesgue integral.

6. Let X be a Banach space. Show that

$$||x|| = \sup\{|\phi(x)| : \phi \in X^* \text{ with } ||\phi|| = 1\}.$$

- 7. Let  $g:[a,b]\to\mathbb{R}$  be absolutely continuous. Show that if  $E\subset[a,b]$  has Lebesgue measure zero then g(E) also has Lebesgue measure zero.
- 8. Prove the Riemann-Lebesgue lemma: If  $f \in L^1(\mathbb{R})$  then

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \cos(nx) \, dx = 0$$

(Here we are using Lebesgue integration on the line).

- 9. Let m be the Lebesgue measure on the real line  $\mathbb{R}$ . Show by example that there exists a sequence of functions in  $L^1(m)$ that converges to zero in  $L^1(m)$  but such that the sequence does not converge to zero pointwise almost everywhere.
- 10. Let  $(X, \mathcal{M}, \mu)$  and  $(Y, \mathcal{N}, \nu)$  be  $\sigma$ -finite measure spaces. Suppose that  $K \in L^2(X \times Y, \mu \otimes \nu)$ . Show that if  $f \in L^2(Y, \nu)$ then the formula

$$(Tf)(x) = \int K(x,y)f(y) d\nu(y)$$

defines a function  $Tf \in L^2(X,\mu)$ . Show that  $T: L^2(X,\mu) \to L^2(Y,\nu)$  is a bounded linear operator satisfying  $||Tf||_2 < 1$  $||K||_2 ||f||_2$ .

1