Real Analysis Preliminary Examination

August, 2010

Do 7 of the following 9 problems. You must clearly indicate which 7 are to be graded. Strive for clear and detailed solutions.

- 1. Let μ be a complete measure. Prove that if f is a measurable function and if f = g μ -a.e., then g is a measurable function.
- 2. Let $\mathcal{E} \subset \mathcal{P}(X)$ and $\rho: \mathcal{E} \to [0, \infty]$ be such that $\emptyset \in \mathcal{E}, X \in \mathcal{E}, \text{ and } \rho(\emptyset) = 0. \ \forall A \subset X, \text{ define}$

$$\mu^*(A) = \inf \left\{ \left. \sum_{j=1}^{\infty} \rho(E_j) \right| E_j \in \mathcal{E} \text{ and } A \subset \bigcup_{j=1}^{\infty} E_j \right\}.$$

Prove that μ^* is an outer measure.

3. Let f be a nonnegative element of $L^1[0,1]$. Prove that

$$\lim_{n\to\infty} \int_0^1 (f(x))^{1/n} \ dx = m(\{x\in [0,1]|f(x)>0\}).$$

4. Suppose $\{f_n\} \subset L^+$ (nonnegative measurable functions), $f_n \to f$ pointwise, and $\int f = \lim_{n \to \infty} f_n < \infty$. Prove that for all $E \in \mathcal{M}$

$$\int_{E} f = \lim_{n \to \infty} \int_{E} f_n.$$

5. Let $1 \leq p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p(\mathbb{R})$, and $g \in L^q(\mathbb{R})$. Prove that

$$f * g(x) = \int_{\mathbb{R}} f(x - y)g(y) \ dy$$

exists for every x, $||f * g||_{\infty} \le ||f||_p ||g||_q$, and f * g is uniformly continuous.

6. Suppose f is absolutely continuous on \mathbb{R} and $f \in L^1(\mathbb{R})$. Prove that if, in addition,

$$\lim_{t \to 0^+} \int_{\mathbb{R}} \left| \frac{f(x+t) - f(x)}{t} \right| dx = 0,$$

then $f \equiv 0$. (Hint: begin your work with Fatou)

7. Let $f: \mathbb{R}^n \to \mathbb{R}$ be Lebesgue measurable. Assuming that Lebesgue measure is translation invariant, prove that the Lebesgue integral is translation invariant, i.e. prove that if $f \in L^1(\mathbb{R}^n)$, then

$$\int f(x) \ dm^n = \int f(x+y) \ dm^n.$$

8. Suppose that there exists a $p < \infty$ such that $f \in L^q \cap L^\infty$ for all $q \ge p$. Prove that

$$||f||_{\infty} = \lim_{q \to \infty} ||f||_q.$$

(Warning: Your argument should also show that the limit exists.)

9. Let X and Y be normer vector spaces and T be a bounded linear transformation from X to Y. Define $S: Y^* \to X^*$ by $S(f) = f \circ T$. Prove that S is a bounded linear transformation and that ||S|| = ||T||. (Possible hint: Hahn-Banach.)