Real Analysis Preliminary Examination

May, 2010

Do 7 of the following 9 problems. You must clearly indicate which 7 are to be graded. Strive for clear and detailed solutions.

- 1. Suppose $f,g:X\to [-\infty,\infty]$ are measurable. Prove that fg is measurable (where $0\cdot (\pm \infty)=0$).
- 2. Let $f \in L^1(\mathbb{R}^1)$. Prove that $\lim_{n \to \infty} \int_{-\infty}^{\infty} (\cos x)^n f(x) \ dx = 0$.
- 3. Let μ and λ be positive measures on a σ -algebra \mathcal{A} . Prove that the following two statements are equivalent:
 - a) $\forall A \in \mathcal{A}$, if $\mu(A) = 0$, then $\lambda(A) = 0$.
 - b) $\forall \epsilon > 0$, $\exists \delta > 0$, such that $\forall A \in \mathcal{A}$, if $\mu(A) < \delta$, then $\lambda(A) < \epsilon$.

(Possible hint for one direction: Proceed by contradiction.)

4. Prove that if f, g are complex-valued functions in $L^1(X, \mathcal{M}, \mu)$, then

$$\int_{E} f = \int_{E} g \ \forall E \in \mathcal{M} \text{ iff } f = g \text{ a.e.}$$

5. Suppose $1 \leq p < \infty$. If $f_n, f \in L^p$ and if $f_n \to f$ a.e., then prove that

$$||f_n - f||_p \to 0 \text{ iff } ||f_n||_p \to ||f||_p.$$

6. Prove that if $f \in L^1(0,1)$ and a > 0, then the integral

$$F_a(x) = \int_0^x (x - y)^{a-1} f(y) \ dy$$

exists for a.e. $x \in (0,1)$ and $F_a \in L^1(0,1)$.

- 7. Prove that $L^{\infty}(X, \mathcal{M}, \mu)$ is complete.
- 8. Prove that $C_c(\mathbb{R}^n)$ (continuous functions with compact support in \mathbb{R}^n) is dense in $L^p(\mathbb{R}^n)$ for $1 \leq p < \infty$.
- 9. Let H be an infinite-dimensional Hilbert space. Prove that every orthonormal sequence in H converges weakly to 0.

Du