Real Analysis Preliminary Examination

May 2011

Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded. Strive for clear and detailed solutions.

- 1. Let m denote the Lebesgue measure on \mathbb{R} . Prove or disprove: there is a measurable set $A \subseteq \mathbb{R}$ with the property that for every bounded interval I, $m(A \cap I)/mI = 1/2$.
- 2. Let (X,\mathfrak{B}) be a measurable space and $x_0 \in X$. Define a measure δ_{x_0} on this space by $\delta_{x_0}E = \chi_E(x_0)$ (you may assume without proof that δ_{x_0} is a measure). Show that if f is δ_{x_0} -measurable then $\int_X f \, \mathrm{d}\delta_{x_0} = f(x_0)$.
- 3. Let (X, \mathfrak{G}, μ) be a measure space and $\{f_n\}$ a sequence of measurable functions on X. Let E denote the set of points x at which the sequence $\{f_n(x)\}$ does not converge. Show that E is measurable.
- 4. Suppose f is a Lebesgue integrable function on $\mathbb R$ with the property that $\int_I f \, \mathrm{d} m = 0$ for every interval I. Show that f = 0 a.e..
- 5. Suppose $f \in C[a, b]$ and for every nonnegative integer k, $\int_{[a,b]} f(x)e^{kx} dx = 0$. Show that $f \equiv 0$ on [a, b].
- 6. Let (X, \mathfrak{B}, μ) be a finite measure space.
- (i) Show that $L^2(X,\mu) \subseteq L^1(X,\mu)$.
- (ii) Suppose that $\{f_n\}_{n\geq 1}$ is a Cauchy sequence of functions in $L^2(X,\mu)$. Show that $\{f_n\}_{n\geq 1}$ is also Cauchy with respect to the L^1 -norm.
- 7. Determine $\lim_{n\to\infty} \int_{[0,\infty)} \frac{1}{x^{1/n}+x^n} dx$. (As always, you must *justify* each step.)
- 8. Show that $L^{\infty}[0,1]$ is not separable.
- 9. Let H be a Hilbert space with inner product $\langle -, \rangle$ and u a nonzero element of H. Define a function F on H by $F(x) = \langle u, x \rangle$.
- (i) Show that F is continuous on H.
- (ii) Show that F is an open mapping.
- 10. Let $X=Y=\{1,2,\ldots\}$ and $\mu=\nu$ be the counting measure on X and Y respectively. Let

$$f(x,y) = \begin{cases} 2 - 2^{-x}, & \text{if } x = y, \\ -2 + 2^{-x}, & \text{if } x = y + 1, \\ 0, & \text{otherwise.} \end{cases}$$

Compute $\int_X \int_Y f(x,y) \, d\nu(y) \, d\mu(x)$, $\int_Y \int_X f(x,y) \, d\mu(x) \, d\nu(y)$, $\int_{X\times Y} f^+(x,y) \, d(\mu(x)\times\nu(y))$ and $\int_{X\times Y} f^-(x,y) \, d(\mu(x)\times\nu(y))$. Explain in detail why these results don't contradict the theorems of Fubini and Tonelli.