Real Analysis Preliminary Examination

May, 2012

Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded. Strive for clear and detailed solutions.

1. Prove that an outer measure μ^* on a σ -algebra \mathcal{M} is a measure if and only if

$$\mu^* (E \cup F) = \mu^* (E) + \mu^* (F),$$

for any disjoint sets E and F in \mathcal{M} .

- 2. Let (X, \mathcal{M}) be a measurable space. Prove that for any sequence of measurable functions $\{f_1, f_2, \ldots\}$, $\sup_n f_n$ is a measurable function.
- 3. Let F be an increasing, right continuous function on \mathbb{R} , and μ_F be the Lebesgue-Stieltjes measure associated to F. Prove that

$$\mu_F(\{a\}) = F(a) - F(a^-).$$

- 4. Let $f, f_n, n = 1, 2, ...$ be in $L^P(X, \mathcal{M}, \mu)$ for a p satisfying $1 \le p < \infty$, $|f_n| \le |f|$ for all n, and $\lim_{n \to \infty} f_n = f$ a.e. Prove that $f_n \to f$ in L^p .
- 5. Let $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ be σ -finite measure spaces and f be a $\mathcal{M} \otimes \mathcal{N}$ -measurable function on $X \times Y$. Prove that if

$$\int \int |f(x,y)| \ d\mu(x) d\nu(y) < \infty$$

then f is $\mu \times \nu$ -integrable and

$$\int f \ d(\mu \times \nu) = \int \int f(x,y) \ d\mu(x) d\nu(y) = \int \int f(x,y) \ d\nu(y) d\mu(x).$$

- 6. Let $-\infty < a < b < \infty$. Prove that every function of bounded variation on [a, b] is Riemann integrable on [a, b].
- 7. Let (X, \mathcal{M}) be a measurable space, μ be a positive measure and ν be a signed measure on (X, \mathcal{M}) . Prove that if $|\nu(E)| \leq \mu(E)$ for all $E \in \mathcal{M}$, then

$$\nu \ll \mu$$
 and $\left| \frac{d\nu}{d\mu} \right| \leq 1$ μ -a.e.

8. Let $-\infty < a < b < \infty$ and f be a continuous function on [a,b]. Prove that if

$$\int_{a}^{b} x^{n} f(x) \ dx = 0 \text{ for all } n = 0, 1, 2, ..., \text{ then } f \equiv 0 \text{ on } [a, b].$$

9. Let (X, \mathcal{M}, μ) be a measure space over \mathbb{R} , $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$, and $g \in L^q$. Define $\phi : L^p \to \mathbb{R}$:

$$\phi(f) = \int f g \ d\mu.$$

Prove that ϕ is a bounded linear functional on L^p and $\|\phi\| = \|g\|_q$.

10. Prove that if $f \in L^p(X, \mathcal{M}, \mu)$ then $E = \{x : f(x) \neq 0\}$ is σ -finite.