August 2014

Do 7 of the 9 problems. You must clearly indicate which problems are to be graded. If you don't do this, then problems 1 - 7 will be graded. Strive for clear and detailed solutions.

On this exam (X, \mathcal{M}, μ) denotes a general measure space. \mathbb{R} denotes the extended real numbers $[-\infty, \infty]$.

1. Define $\phi: \mathbb{R} \to \mathbb{R}$ such that

$$\phi(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

(Assume that $\frac{1}{\pm \infty} = 0$.) Prove that ϕ is Borel measurable.

- 2. Let (f_n) be a sequence of \mathbb{R} -valued measurable functions on a set $D \in \mathcal{M}$. Suppose that for all $\eta > 0$ there exists an M-measurable subset $E \subset D$ such that $\mu(E) < \eta$ and $\lim_{n\to\infty} f_n(x)$ exists for all $x\in D\setminus E$. Prove that $\lim_{n\to\infty} f_n(x)$ exists a.e. on D.
- 3. Let $f \in L^1(X)$ and let $\epsilon > 0$. Prove that there exists $E \in \mathcal{M}$ such that $\mu(E) < \infty$ and

$$\left| \int_X f - \int_E f \right| < \epsilon.$$

4. Using the Fubini/Tonelli theorems to justify all steps, evaluate

$$\int_0^1 \int_y^1 x^{-3/2} \cos\left(\frac{\pi y}{2x}\right) dx dy$$

5. Let ν be a signed measure. Define $|\nu|$ as $\nu^+ + \nu^-$, where $\nu = \nu^+ - \nu^-$ is the Jordan decomposition of ν . Prove that

$$|\nu|\left(E\right) = \sup_{\left(E_{i}\right)} \left\{ \sum_{i=1}^{n} |\nu(E_{i})| : E_{i} \text{ are disjoint and } E = \bigcup_{i=1}^{n} E_{i} \right\}.$$

6. Let $f: \mathbb{R} \to \mathbb{R}, f \in L^1(\mathbb{R})$. Let

$$g(x) = \int_{\mathbb{R}} e^{-|y|} f(x-y) dy, \quad x \in \mathbb{R}.$$

- (a) Prove that g is continuous on \mathbb{R} .
- (b) Prove that g is of bounded variation on R. (Possible hint: Let $h(x) = e^{-|x|}$. Express h in terms of $\psi(x) = e^{\min(0,x)}$.)
- 7. If μ and ν are finite positive measures on (X, \mathcal{M}) , prove there exists a nonnegative measurable function f on X such that for all $E \in \mathcal{M}$,

$$\int_E (1-f) d\mu = \int_E f d\nu.$$

- 8. Let H be an infinite-dimensional Hilbert space.
 - (a) Prove that every orthonormal sequence in H converges weakly to 0.
 - (b) Prove that the unit sphere $S = \{x : ||x|| = 1\}$ is weakly dense in the unit ball $B = \{x : ||x|| \le 1\}$.
- 9. Suppose $0 < \mu(X) < \infty$ and $f \in L^p(X)$ for all $1 \le p < \infty$ and suppose there exists a constant C > 0 such that $||f||_p \le C$ for all $p, 1 \le p < \infty$. Prove that $f \in L^\infty(X)$. (Possible hint: Guess what $||f||_\infty$ might be and construct a proof by contradiction.)