Real Analysis Preliminary Examination

August, 2016

Do 7 of the following 9 problems. You must clearly indicate which 7 are to be graded. If you do not do this, then problems 1-7 will be graded. Strive for clear and detailed solutions.

- 1. Let μ^* be an outer measure on X induced by a premeasure μ_0 on a semialgebra \mathcal{A} of subsets of X. Prove that for any $E \subset X$, there exists a μ^* -measurable set $A \supset E$ such that $\mu^*(E) = \mu(A)$.
- 2. Let E be a bounded Lebesgue measurable subset of \mathbb{R} such that the sets $\{E_r = \{x+r : x \in E\} : r \in [0,1] \cap \mathbb{Q}\}$ are disjoint. Prove that m(E) = 0.
- 3. Let X be a uncountable set, and ρ be a set function on $\mathcal{P}(X)$ defined by

$$\rho(E) = \begin{cases} 0, & \text{if } E \text{ has less than 2 elements,} \\ 1, & \text{otherwise.} \end{cases}$$

Describe the outer measure μ^* on $\mathcal{P}(X)$ generated by ρ , and the σ -algebra \mathcal{M} of all μ^* -measurable sets. Justify your answers.

- 4. Let (X, \mathcal{M}, μ) be a measure space, and $f: X \to \mathbb{R}$ be measurable function. Prove that if $\int_{\mathbb{R}} |f| d\mu \le \mu(E)$ for every $E \in \mathcal{M}$, then $-1 \le f \le 1$ a.e.
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and $E = \{(x, y) \in \mathbb{R}^2 : y = f(x)\}$ be the graph of f. Prove that E is Borel measurable on \mathbb{R}^2 and $(m \times m)(E) = 0$.
- 6. Let $\{f_n\}$ be a sequence of measurable functions on (X, \mathcal{M}, μ) such that $\lim_{n\to\infty} f_n(x) = f(x)$ a.e. Suppose that there exists an M > 0 such that $|f_n(x)| \leq M$ for all n and for all $x \in X$. Prove that for all E with $\mu(E) < \infty$,

$$\lim_{n\to\infty} \int_E f_n \ d\mu = \int_E f \ d\mu.$$

7. Let ν be a signed measure on a measurable space (X, \mathcal{M}) . Prove that

$$\nu^+(E) = \sup \{ \nu(F) : F \in \mathcal{M}, F \subset E \}$$

and

$$\nu^-(E) = -\inf\{\nu(F): F \in \mathcal{M}, F \subset E\}$$

for every $E \in \mathcal{M}$.

- 8. Let f be absolutely continuous on [a, b] and f' = 0 a.e. with respect to the Lebesgue measure. Prove that f is a constant on [a, b].
- 9. Let X be a normed vector space over \mathbb{R} and x be a nonzero vector in X. Prove that there is a closed subspace M of X such that

$$M \cap \operatorname{span}(x) = \{0\}$$
 and $X = M + \operatorname{span}(x)$.