Real Analysis

Do 7 of the following 9 problems. You must clearly indicate which problems are to be graded. If you do not do this, then problems 1-7 will be graded. Strive for clear and detailed solutions. Notation: (X, \mathcal{M}, μ) denotes a measure space. 1_A denotes the characteristic function of the set A. $|\nu|$ denotes the total variation of a complex measure.

- 1. (a) Let $f : D \to [-\infty, \infty]$ be measurable on $D \in \mathcal{M}$. Prove that $\forall \alpha \in [-\infty, \infty]$, $\{x \in D | f(x) = \alpha\} \in \mathcal{M}$.
 - (b) Give an example of a function f defined on (0, 1) that is not measurable, but such that $\{x \in (0, 1) | f(x) = \alpha\}$ is Lebesgue measurable $\forall \alpha \in [-\infty, \infty]$.
- 2. We say that $\{A_{\lambda} | \lambda \in \Lambda\} \subset \mathcal{M}$ is almost disjoint if $\lambda_1, \lambda_2 \in \Lambda$ and $\lambda_1 \neq \lambda_2$ imply that $\mu(A_{\lambda_1} \cap A_{\lambda_2}) = 0$. Prove that if $\{A_n | n \in \mathbb{N}\}$ is almost disjoint, then

$$\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n).$$

- 3. Let μ be a nonzero measure on the σ -algebra of all subsets of \mathbb{R} such that μ only takes the values 0 and 1. Prove that μ must be a point mass (i.e. $\exists x_0 \in \mathbb{R}$ such that $\mu(E) = 1_E(x_0)$). (There is more than one way to do this, but a hint for one method is to use some combination of the theorems that describes all complex Borel measures and all positive Borel measures on \mathbb{R} . A hint for another method is to use a nested intervals argument.)
- 4. Let $\alpha, \beta : \mathbb{R} \to \mathbb{R}$ be two increasing functions. Prove that

$$\int_{[a,b]} \beta(x^{+}) d\mu_{\alpha}(x) + \int_{[a,b]} \alpha(x^{-}) d\mu_{\beta}(x) = \alpha(b^{+})\beta(b^{+}) - \alpha(a^{-})\beta(a^{-}).$$

(Note: The measure induced by an increasing function G(x) is the same as the measure induced by its right continuous modification $G(x^+)$.) (Hint: Use some form of the Tonelli or Fubini Theorem.)

- 5. Suppose that $f_k \to f$ in $L^p(X)$, $1 \le p \le \infty$, $g_k(x) \to g(x) \quad \forall x \in X$, and $\|g_k\|_{\infty} \le M \quad \forall k$. Prove that $f_k g_k \to fg$ in $L^p(X)$.
- 6. Prove that if ν_1 and ν_2 are complex measures on (X, \mathcal{M}) such that ν_1 and ν_2 are mutually singular, then $|\nu_1 + \nu_2| = |\nu_1| + |\nu_2|$.
- 7. Let X be a Banach space and let $J: X \to X^{**}$ such that $J(x) = \hat{x}$, where $\hat{x}(f) = f(x)$, $\hat{x}: X^* \to \mathbb{C}$. Prove that J(X) is a closed subspace of X^{**} . (Just prove that it is closed.)
- 8. Sketch a proof that $L^p(\mathbb{R}^n)$ has a countable dense subset.
- 9. Suppose $f : [a, b] \to \mathbb{R}$ is continuous and maps sets of Lebesgue measure zero to sets of Lebesgue measure zero. Prove that f maps Lebesgue measurable sets to Lebesgue measurable sets. (Hint: Continuous functions map compact sets to compact sets.)