Direction: Complete seven (7) of the following nine problems, and indicate in the box below which seven problems should be graded. If you do not do this, then problems 1-7 will be graded. Strive for clear and detailed solutions.

1. Let μ^* be an outer measure on X and $E \subset X$. Prove that if for all $\epsilon > 0$, there is a μ^* measurable set $A \subset E$ such that $\mu^*(E \setminus A) < \epsilon$, then E is μ^*-measurable.

2. Let (X, \mathcal{M}, μ) be a measure space and f, g be real valued measurable functions on X such that $g(x) \neq 0 \quad \forall x \in X$. Prove that f/g is measurable.

3. Let A be a semi-algebra over X, μ be a pre-measure on A, and μ^* be the outer measure on X induced by μ.
 a) Prove that for every $E \subset X$, there is a μ^*-measurable $A \supset E$ such that $\mu^*(E) = \mu^*(A)$.
 b) Prove that $B \subset X$ is μ^*-measurable if and only if for every μ^*-measurable set A with $\mu^*(A) < \infty$, $\mu^*(A) = \mu^*(A \cup B) + \mu^*(A \cup B^c)$.

4. Let (X, \mathcal{M}, μ) be a measure space, and $f(x)$ be a real valued measurable function on X such that $\int_X |f| \, d\mu = 0$.
 Prove that $f = 0$ a.e.

5. Compute (with justification) $\lim_{n \to \infty} \int_0^\infty \frac{\cos x}{x^{1/n} + x^n} \, dx$.

6. Let $S \subset \mathbb{R}^2$ be the region defined by

 $S = \{(x, y) \in \mathbb{R}^2 : 0 \leq y \leq \sin(x), 0 < x < \pi\}$.

 For any $f \in L^1((0, \pi), m)$, prove that $\csc(x)f(x) \in L^1(S, m \times m)$ and

 $\int_S \csc(x)f(x) \, d(m \times m) = \int_0^\pi f(x) \, dx$.

7. Prove in an infinite dimensional Hilbert space H, the unit ball

 $B = \{h \in H : \|h\| \leq 1\}$

 is not compact.

8. Let X and Y be Banach spaces over \mathbb{R}. Prove that if a bounded linear operator $T : X \to Y$ is one-to-one and onto, then $T^{-1} : Y \to X$ is a bounded LINEAR operator.

9. Let $0 < p, q, r < \infty$ and $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. Prove that for any measurable functions f, g over (X, \mathcal{M}, μ),

 $\|fg\|_r \leq \|f\|_p \|g\|_q$.

Real Analysis Preliminary Examination
August, 2022