Real Analysis Preliminary Examination

August, 2023

Direction: Complete seven (7) of the following nine problems, and indicate in the box below which seven problems should be graded. If you do not do this, then problems 1-7 will be graded. Strive for clear and detailed solutions.

1. Let $X \neq \emptyset$ and \mathcal{P} be its power set. Define $\mathcal{M} = \mathcal{P}(X)$. Then it is a fact that for any $f: X \mapsto [0, \infty]$,

$$\mu : \mathcal{P}(X) \mapsto [0, \infty]$$
 defined by $\mu(E) = \sum_{x \in E} f(x)$

is a measure (you do not have to prove this fact). Prove that μ is semifinite if and only if $f(x) < \infty$ for all $x \in X$.

- 2. Let $X \neq \emptyset$, \mathcal{P} be its power set, and $\mu^* : \mathcal{P}(X) \mapsto [0, \infty]$ be an outer measure on X.
 - 1. Suppose that $E \subset X$ and $\mu^*(E) = 0$. Prove that E is μ^* -measurable.
 - 2. Let M denote the collection of μ^* -measurable sets and μ the restriction of μ^* to M. Assuming that μ is a measure, prove that it is complete.
- 3. Let $X \neq \emptyset$ and \mathcal{M} be a σ -algebra on X. Recall that

 $L^+ = \{ f : X \mapsto [0, \infty] \text{ such that } f \text{ is } \mathcal{M}\text{-measurable} \}.$

Let $f \in L^+$ such that $\int f < \infty$. Prove that $\{x : f(x) = \infty\}$ is a null set and $\{x : f(x) > 0\}$ is σ -finite.

- 4. Let $X \neq \emptyset$, \mathcal{M} be a σ -algebra on X, and ν be a complex measure on (X, \mathcal{M}) . Prove that
 - 1. $L^{1}(\nu) = L^{1}(|\nu|),$ 2. if $f \in L^{1}(\nu)$, then

$$\left|\int f d\nu\right| \leq \int |f| d|\nu|.$$

- 5. Let μ be a positive measure. A collection of functions $\{f_{\alpha}\}_{\alpha \in A} \subset L^{1}(\mu)$ is said to be uniformly integrable if $\forall \epsilon > 0, \exists \delta > 0$ such that $|\int_{E} f_{\alpha} d\mu| < \epsilon$ for all $\alpha \in A$ whenever $\mu(E) < \delta$. Prove that any finite subset of $L^{1}(\mu)$ is uniformly integrable.
- 6. Recall that for $F : \mathbb{R} \to \mathbb{C}$, the total variation of F at x is defined by

$$T_F(x) = \sup\left\{\sum_{j=1}^n |F(x_j) - F(x_{j-1})| : n \in \mathbb{N}, -\infty < x_0 < x_1 < \dots < x_n = x\right\}.$$

Define

$$F(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Prove that $F \in BV([0,1])$ by proving that $T_F(1) - T_F(0) < 3$.

7. Let \mathcal{H} be a Hilbert space. Fix $y \in \mathcal{H}$ and define $f_y \in \mathcal{H}^*$, the dual space of \mathcal{H} , by

$$f_y(x) = \langle x, y \rangle.$$

Prove that

$$\|f_y\|_{\mathcal{H}^*} = \|y\|_{\mathcal{H}}.$$

8. Given a measure space (X, \mathcal{M}, μ) , we denote $L^p(X, \mathcal{M}, \mu)$ by L^p for all $p \in [1, \infty]$. Suppose that $1 \leq p_j \leq \infty, n \in \mathbb{N}$ is arbitrary,

$$\sum_{j=1}^{n} p_j^{-1} = r^{-1} \le 1,$$

and $f_j \in L^{p_j}$ for all $j \in \{1, ..., n\}$. Prove that $\prod_{j=1}^n f_j \in L^r$ and $\|\prod_{j=1}^n f_j\|_{L^r} \leq \prod_{j=1}^n \|f_j\|_{L^{p_j}}$.

9. Given a measure space (X, \mathcal{M}, μ) , we denote $L^p(X, \mathcal{M}, \mu)$ by L^p for all $p \in [1, \infty]$. Let $q \in [1, \infty)$. Suppose that $\{f_n\}_{n=1}^{\infty} \subset L^{\infty} \cap L^1$ satisfies $f_n \to f$ in L^{∞} as $n \to \infty$ while $f_n \to g$ in L^q as $n \to \infty$. Prove that f = g almost everywhere.