Real Analysis Preliminary Examination

May, 2023

Direction: Complete seven (7) of the following nine problems, and indicate in the box below which seven problems should be graded. If you do not do this, then problems 1-7 will be graded. Strive for clear and detailed solutions.

- 1. Let $X \neq \emptyset$ and \mathcal{M} be a σ -algebra on X. Prove that every σ -finite measure on (X, \mathcal{M}) is semifinite.
- 2. Given a set $X \neq \emptyset$ and its power set $\mathcal{P}(X)$, suppose that $\mu^* : \mathcal{P}(X) \mapsto [0, \infty]$ is the outer measure on X and that $\{A_j\}_{j=1}^{\infty}$ is a collection of disjoint μ^* -measurable sets. Prove that

$$\mu^*(E \cap (\cup_{j=1}^{\infty} A_j)) = \sum_{j=1}^{\infty} \mu^*(E \cap A_j) \quad \forall E \subset X.$$

3. Given any measure space (X, \mathcal{M}, μ) , denote $L^1(X, \mathcal{M}, \mu)$ by L^1 . Prove that if $f_n, g_n, f, g \in L^1$, satisfy all of

$$\begin{aligned} f_n &\to f, \quad g_n \to g \;\; \mu\text{-a.e.} \\ |f_n| &\leq g_n, \\ &\int g_n d\mu \to \int g d\mu, \end{aligned}$$

then

$$\int f_n d\mu \to \int f d\mu$$

4. Suppose $f: [0,1] \mapsto \mathbb{C}$. Prove that

$$|f(x) - f(y)| \le |x - y| \quad \forall x, y \in [0, 1]$$
(1)

if and only if f is absolutely continuous, differentiable almost everywhere, and $|f'(x)| \leq 1$ almost everywhere.

- 5. Let X = [0, 1], $\mathcal{M} = \mathcal{B}_{[0,1]}$, m = Lebesgue measure and $\mu =$ counting measure on \mathcal{M} . Prove that $m \ll \mu$, but $dm \neq f d\mu$ for any $f \in L^1(\mu)$.
- 6. The following is a fact that holds true. "Let ν be a finite signed measure and μ a positive measure on (X, \mathcal{M}) . Then $\nu \ll \mu$ implies that for every $\epsilon > 0$, there exists $\delta > 0$ such that $|\nu(E)| < \epsilon$ whenever $E \in \mathcal{M}$ and $\mu(E) < \delta$." Prove that the claim can fails when ν is not necessarily a finite measure by giving a counterexample.
- 7. Suppose that \mathcal{X} is a Banach space, \mathcal{X}^* is its dual space,

$$\begin{split} &\Lambda_n \in \mathcal{X}^* \quad \forall \ n \in \mathbb{N}, \\ &\lim_{n \to \infty} \Lambda_n x \text{ exists for all } x \in \mathcal{X}, \\ &\text{and we define } \Lambda x = \lim_{n \to \infty} \Lambda_n x \ \forall \ x \in \mathcal{X} \end{split}$$

Prove that $\Lambda \in \mathcal{X}^*$.

8. Consider $X = [0, 2\pi]$ and $L^2([0, 2\pi])$ with Lebesgue measure m and its inner product defined by

$$\langle f,g\rangle = \frac{1}{2\pi}\int_0^{2\pi} f\bar{g}dm(x).$$

Let $e_n(t) = e^{int}$ for $n \in \mathbb{N}$; you may take it for granted that $\{e_n\}_{n \in \mathbb{N}}$ is an orthonormal basis for $L^2([0, 2\pi])$. Prove that

$$\lim_{n \to \infty} \int_E e_n(t) dt = 0$$

for all $E \subset [0, 2\pi]$ that is measurable.

9. Recall the definition of

$$L^{\infty} = L^{\infty}(X, \mathcal{M}, \mu) = \{ f : X \mapsto \mathbb{C} : f \text{ is } \mathcal{M}\text{-measurable and } \|f\|_{L^{\infty}} < \infty \}$$

where

$$||f||_{L^{\infty}} = \inf\{a \ge 0 : \mu(\{x : |f(x)| > a\}) = 0\}.$$

Prove that the simple functions are dense in L^{∞} . You may freely use the following two facts. First, $\|\cdot\|_{L^{\infty}}$ is norm. Second, $\|f_n - f\|_{L^{\infty}} \to 0$ as $n \to \infty$ if and only if there exists $E \in \mathcal{M}$ such that $\mu(X \setminus E) = 0$ and $f_N \to f$ uniformly on E.