## **Real Analysis Preliminary Examination**

## May, 2025

*Direction:* Complete seven (7) of the following nine problems, and indicate in the box below which seven problems should be graded. If you do not do this, then problems 1-7 will be graded. Strive for clear and detailed solutions.



- 1. Let  $\mu^*$  be an outer measure over X and A be a  $\mu^*$ -measurable set. Prove that if a set  $E \subset X$  has the property that  $\mu^*(E \triangle A) = 0$ , then E is  $\mu^*$ -measurable.
- 2. Let  $m^*$  be the Lebesgue outer measure on  $\mathcal{P}(\mathbb{R})$  and m be the Lebesgue measure. Prove that  $\forall E \subset \mathbb{R}, \exists$  a Borel set  $B \subset \mathbb{R}$  such that  $B \supset E$  and  $m(B) = m^*(E)$ .
- 3. Let  $(X, \mathcal{M}, \mu)$  be a complete measure space and  $f, g : X \to [-\infty, \infty]$  such that f = g a.e. If f is  $\mathcal{M}$ -measurable, prove that g is also  $\mathcal{M}$ -measurable.
- 4. Compute

$$\lim_{n \to \infty} \int_0^\infty \frac{x}{\sqrt{1+x^n}} \, dx$$

and justify all your steps.

5. Let f be a Lebeqgue integrable function over  $\mathbb{R}$ . Prove that  $\int_0^\infty \int_{\ln y}^\infty e^{-x} f(x) \, dx dy$  exists, and

$$\int_0^\infty \int_{\ln y}^\infty e^{-x} f(x) \, dx dy = \int_{-\infty}^\infty f(x) \, dx.$$

6. Let  $\nu_1, \nu_2, \mu$  be finite signed measures such that  $\nu_1 \perp \mu$  and  $\nu_2 \perp \mu$ . Accepting the fact without proving that  $a\nu_1 + b\nu_2$  is a signed measure for any  $a, b \in \mathbb{R}$ , prove that

$$(a\nu_1+b\nu_2)\perp\mu.$$

- 7. Suppose  $f \in C[a, b]$ ,  $-\infty < a < b < \infty$ , and for every nonnegative integer k,  $\int_{[a,b]} f(x) x^{3k} dx = 0$ . Show that  $f \equiv 0$  on [a, b].
- 8. Let X, Y be Banach spaces over  $\mathbb{R}$ , L(X, Y) be the space of bounded linear operators from X to Y, and  $\{T_n\} \subset L(X, Y)$  which converges pointwise on X to a function T. Show that  $T \in L(X, Y)$ .
- 9. Suppose  $f \in L^p(X, \mathcal{M}, \mu)$  for all  $1 \leq p < \infty$  and that there exists a constant c > 0 such that  $||f||_p \leq c$  for all  $1 \leq p < \infty$ . Prove that  $f \in L^{\infty}(X, \mathcal{M}, \mu)$ .