TOPOLOGY PRELIMINARY EXAM May, 1996

WORK ALL PROBLEMS. CLEARLY INDICATE ANY MAJOR RESULTS USED. ASSUME ALL SPACES ARE T_2 .

- 1. Give an example of each of the following. Clearly indicate why your example has the desired properties.
- a.) a metric space with no equivalent complete metric,
- b.) a separable space which is not Lindelöf.
- c.) a space in which every infinite set has a limit point, but not every sequence has a convergent subsequence.
- 2. State and prove the Tietze extension theorem.
- 3. Let d be a metric compatible with the topology on the space X. Show that $d: X \times X \to R$ is a continuous function.
- 4. Let $X = \prod_{\alpha \in A} X_{\alpha}$. Prove that X is connected if and only if each X_{α} is connected.
- 5. Prove that if X is second countable then every base for the topology of X has a countable subcollection which is a base for that topology.
- 6. Show that if $f: X \to Y$ is a closed, continuous, surjection with X locally compact and each $f^{-1}(y)$ compact, then Y is locally compact.
- 7. Let $p:(E,e_0)\to (X,x_0)$ be a covering space map of the path connected space X. Show that if $p^{-1}(x_0)$ has exactly k elements, then $p^{-1}(x)$ has exactly k elements for each $x\in X$.
- 8. A path connected space X is 1-simple if and only if every two paths p and q in X with p(0)=q(0) and p(1)=q(1) induce the same isomorphism from $\pi_1(X,p(0))$ to $\pi_1(X,p(1))$, i.e. $[p^r][\alpha][p]=[q^r][\alpha][q]$ for each loop α based at p(0). Show that X is 1-simple if and only if $\pi_1(X)$ is abelian.
- 9. Suppose that X and Y are topological spaces and that $f: X \to Y$ is a homotopy equivalence with homotopy inverse $g: Y \to X$. Show that $\pi_1(X, x_0)$ is isomorphic to $\pi_1(Y, f(x_0))$. [WARNING: While $gf \sim id_X$, the homotopy need not keep x_0 fixed.]