TOPOLOGY PRELIMINARY EXAM MAY 1997

Work all problems. Clearly reference any major theorems or results used. Assume All Spaces Are T_2 .

- 1) Show that any compact subspace of a Hausdorff space is closed.
- 2) Let (X, d) be a metric space. Show that $d: X \times X \to \mathbb{R}$ is continuous.
- 3) Let $X = \prod_{\alpha \in A} X_{\alpha}$, where each X_{α} is nonempty. Show that X is connected if and only if each X_{α} is connected.
- 4) Give examples of each of the following. Indicate why your examples have the indicated properties.
 - (a) A metric space having no equivalent complete metric.
 - (b) A space showing that the product of normal spaces need not be normal.
 - (c) A space that is completely regular but is not normal.
- (d) A space whose quasi-components are not the same as its components.
- 5) Let $f: X \to Y$ be a continuous surjection and let X be locally connected and compact Hausdorff. Prove that Y is locally connected.
- 6) State and prove the Baire Category Theorem for complete metric spaces.
- 7) Show the following without using the Van Kampen Theorem. Let $X = U \cup V$, where U and V are open in X and $U \cap V$ is path connected. Let x_0 be a point of $U \cap V$. If both inclusions:
 - (i) $i:(U,x_0)\to (X,x_0)$, and
- (ii) $j:(V,x_0)\to (X,x_0),$

induce zero homomorphisms of the fundamental groups, then $\pi_1(X, x_0) = 0$.

OVER

- 8) Let $p: E \to B$ be a covering map and let $p(e_0) = b_0$. Prove that any path $f: [0,1] \to B$ beginning at b_0 has a unique lifting to a path \tilde{f} in E beginning at e_0 . (This result is sometimes called the path lifting lemma.)
- 9) Prove that the following statements are equivalent. Prove that one of these statements is true.
 - (a) Any continuous function from the disk to itself has a fixed point.
 - (b) There is no retract of a disk $D = \{(x, y) \in \mathbb{R}^2 | \sqrt{x^2 + y^2} \le 1\}$ onto its boundary.