TOPOLOGY PRELIMINARY EXAM, May, 2001

WORK ALL PROBLEMS. STATE PRECISELY ANY MAJOR THEOREMS AND RESULTS USED.

- 1. Prove that the closure of a connected set is connected.
- 2. Prove that a topological space satisfies the fourth separation axiom (axiom T_4) if and only if any neighborhood of any closed set contains the closure of some neighborhood of the same set.
- 3. Prove that for a metric space separability is equivalent to being second countable.
- 4. Prove the Lindelöf Theorem: Every open cover of a second countable space contains a countable subcover.
- 5. Prove that the cube I^n is compact.
- Given manifold X=(-4,4) find its class C' and state orientability if the atlas of X consists of three charts $(U_1=(-4,0), \quad \varphi_1(x)=1-x), \quad (U_2=(-2,2), \quad \varphi_2(x)=x^3), \quad \text{and} \quad (U_3=(0,4), \quad \varphi_3(x)=-x-1).$ If X happens to be orientable then construct an orientation ω .
- 7. Compute X-polynomials for the link
- 8. Compute: (i) the fundamental group $\pi_1(X, x_0)$ of the space X (see Fig. 1), (ii) the fundamental group $\pi_1(X \times Y)$ where X and Y are depicted in Figs 1 and 2, and (iii) the fundamental group $\pi_1(X \vee Y)$ where X and Y are depicted in Figs 1 and 2.

Fig. 1.

Fig. 2.

9. The generators g_1 and g_2 of the fundamental group of a topological space X homeomorphic to a disk with two holes are depicted in Fig. 3. Compute the homotopy class of the loop a depicted in Fig. 4.

Fig. 3.

Fig. 4.

10. Compute the fundamental group of the space X which is homeomorphic to a projective plane with three holes.