TOPOLOGY DOCTORAL PRELIMINARY EXAMINATION August 2003

WORK ALL PROBLEMS. ASSUME THAT ALL SPACES UNDER CONSIDERATION ARE HAUSDORFF (T_2) . GIVE A PRECISE STATEMENT OF ANY MAJOR THEOREM REFERENCED IN ANY ARGUMENT. GIVE AS COMPLETE ARGUMENTS FOR PROOFS AND DESCRIPTIONS OF EXAMPLES AS POSSIBLE.

- 1.) Let $U = \{U_{\alpha} | \alpha \in A\}$ be an open cover of the compact metric space (X, d). Show that there exists a number $\delta > 0$ such that for every subset H of X with $\operatorname{diam}(H) < \delta$ there exists $\alpha_0 \in A$ such that $H \subset U_{\alpha_0}$.
- 2.) Let (X, d) be a metric space. Show that the following are equivalent.
 - a.) X has a countable dense subset.
 - b.) X has a countable basis for its topology.
 - c.) Every open cover of X has a countable subcover.
- 3.) Let $X = \prod_{\alpha \in A} X_{\alpha}$, where A is an arbitrary indexing set and each X_{α} is nonempty. Show that X is regular if and only if each X_{α} is regular.

Give an example to show that the product of normal spaces need not be normal. Clearly indicate why your example has the desired properties.

4.) Show that if $f: X \longrightarrow Y$ is a closed, continuous surjection with X locally compact and each $f^{-1}(y)$ compact, then Y is locally compact.

Show that if the hypothesis that each $f^{-1}(y)$ is compact is omitted then Y need not be locally compact.

- 5.) Let $X = \prod_{\alpha \in A} X_{\alpha}$, where A is an arbitrary indexing set and each X_{α} is nonempty. Prove that X is connected if and only if each X_{α} is connected.
- 6.) Let $p:(E,e_0) \to (B,b_0)$ be a covering map of the path connected space B. Show that if $p^{-1}(b_0)$ has exactly k elements, then $p^{-1}(b)$ has exactly k elements for each $b \in B$.
- 7.) Let $h: S^1 \to S^1$ be a nullhomotopic continuous function from the unit circle S^1 to itself. Show that h has a fixed point and that h maps some point $x \in S^1$ to its antipode -x.
- 8.) Assume that each of X_1 , X_2 and $X_1 \cap X_2$ is an arcwise-connected open subset of the space X, where $X = X_1 \cup X_2$ and $x_0 \in X_1 \cap X_2$. Let $i : X_1 \to X$ and $j : X_2 \to X$ be the inclusion mappings of X_1 and X_2 , respectively, into X. Show that the images of the induced homomorphisms $i_* : \pi_1(X_1, x_0) \to \pi_1(X, x_0)$ and $j_* : \pi_1(X_2, x_0) \to \pi_1(X, x_0)$ generate $\pi_1(X, x_0)$. (This is a major step in the proof of the Seifert van Kampen theorem. Do not quote this theorem as part of the above argument.)

Using this result, give a presentation for the fundamental group of the surface represented by the two-holed torus.