TOPOLOGY DOCTORAL PRELIMINARY EXAMINATION August 2023

WORK ALL PROBLEMS. ALL SPACES UNDER CONSIDERATION ARE HAUSDORFF $\left(T_{2}\right)$. GIVE AS COMPLETE ARGUMENTS FOR PROOFS AND DESCRIPTIONS OF EXAMPLES AS POSSIBLE. IF ANY MAJOR THEOREM IS USED IN ANY ARGUMENT, GIVE A PRECISE STATEMENT OF THE THEOREM.

1. (a) Define the notion of a basis of a topological space.
(b) Let \mathcal{T} be the standard topology on \mathbb{R} and let \mathcal{T}^{\prime} be the topology defined by the basis $\{(a, b] \mid a, b \in \mathbb{R}, a<b\}$. Prove that \mathcal{T}^{\prime} is finer than \mathcal{T} and does not coincide with \mathcal{T}.
2. (a) Let X, Y be topological spaces. Prove that $f: X \rightarrow Y$ is continuous if and only if for every subset A of X, one has

$$
f(\bar{A}) \subset \overline{f(A)}
$$

Here \bar{A} denotes the closure of the set A.
(b) Let $X_{\alpha}, \alpha \in A$ be a family of topological spaces, and let Y be a topological space. Endow $\prod_{\alpha} X_{\alpha}$ with the product topology, and let π_{α} be the projection of $\prod_{\alpha} X_{\alpha}$ onto $X_{\alpha}, \pi_{\alpha}\left(\left(x_{\beta}\right)_{\beta}\right)=x_{\alpha}$. Show that a function $f: Y \rightarrow \prod_{\alpha} X_{\alpha}$ is continuous if and only if $f_{\alpha}=\pi_{\alpha} \circ f$ is continuous for every α.
3. Let \mathcal{U} be an open covering of the compact metric space X. Prove that there exists $\delta>0$ such that for each subset of X having diameter less than δ, there is an element of \mathcal{U} containing it.
4. (a) State Urysohn's Lemma.
(b) State the Tietze Extension Theorem.
(c) State the Seifert-van Kampen Theorem.
5. (a) Define the fundamental group of a path connected space.
(b) Let X be a path connected space and x_{0} and x_{1} two points in X. Prove that $\pi_{1}\left(X, x_{0}\right)$ is isomorphic to $\pi_{1}\left(X, x_{1}\right)$.
6. Compute the fundamental group of the genus 2 surface.
7. (a) Compute the homology groups with integer coefficients of the projective plane.
(b) Compute the homology groups with real coefficients of the 2-dimensional torus. Also, compute its Euler characteristic.
8. Let n be a positive integer and let $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$, and consider the map

$$
f: S^{1} \rightarrow S^{1}, f(z)=z^{n} .
$$

(a) Turn the circles that are the domain of f and the range of f into Δ-complexes so that f becomes a Δ-map.
(b) Compute the group homomorphisms induced by f on the zeroth, first, and second homology groups with integer coefficients of the circle.

