TOPOLOGY DOCTORAL PRELIMINARY EXAMINATION August 2023

WORK ALL PROBLEMS. ALL SPACES UNDER CONSIDERATION ARE HAUSDORFF (T_2) . GIVE AS COMPLETE ARGUMENTS FOR PROOFS AND DESCRIPTIONS OF EXAMPLES AS POSSIBLE. IF ANY MAJOR THEOREM IS USED IN ANY ARGUMENT, GIVE A PRECISE STATEMENT OF THE THEOREM.

- (a) Define the notion of a basis of a topological space.
 (b) Let *T* be the standard topology on ℝ and let *T'* be the topology defined by the basis {(a, b] | a, b ∈ ℝ, a < b}. Prove that *T'* is finer than *T* and does not coincide with *T*.
- 2. (a) Let X, Y be topological spaces. Prove that $f : X \to Y$ is continuous if and only if for every subset A of X, one has

$$f(\overline{A}) \subset \overline{f(A)}.$$

Here \overline{A} denotes the closure of the set A.

(b) Let $X_{\alpha}, \alpha \in A$ be a family of topological spaces, and let Y be a topological space. Endow $\prod_{\alpha} X_{\alpha}$ with the product topology, and let π_{α} be the projection of $\prod_{\alpha} X_{\alpha}$ onto $X_{\alpha}, \pi_{\alpha}((x_{\beta})_{\beta}) = x_{\alpha}$. Show that a function $f: Y \to \prod_{\alpha} X_{\alpha}$ is continuous if and only if $f_{\alpha} = \pi_{\alpha} \circ f$ is continuous for every α .

- 3. Let \mathcal{U} be an open covering of the compact metric space X. Prove that there exists $\delta > 0$ such that for each subset of X having diameter less than δ , there is an element of \mathcal{U} containing it.
- 4. (a) State Urysohn's Lemma.(b) State the Tietze Extension Theorem.(c) State the Seifert-van Kampen Theorem.
- 5. (a) Define the fundamental group of a path connected space.
 (b) Let X be a path connected space and x₀ and x₁ two points in X. Prove that π₁(X, x₀) is isomorphic to π₁(X, x₁).
- 6. Compute the fundamental group of the genus 2 surface.

7. (a) Compute the homology groups with integer coefficients of the projective plane.

(b) Compute the homology groups with real coefficients of the 2-dimensional torus. Also, compute its Euler characteristic.

8. Let n be a positive integer and let $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$, and consider the map

$$f: S^1 \to S^1, f(z) = z^n.$$

(a) Turn the circles that are the domain of f and the range of f into Δ -complexes so that f becomes a Δ -map.

(b) Compute the group homomorphisms induced by f on the zeroth, first, and second homology groups with integer coefficients of the circle.