Topology Doctoral Preliminary Examination Topics

1 Simplicial sets
 - Simplicial sets, simplicial maps, generators and relations for simplicial sets.
 - Limits and colimits of simplicial sets, function complexes, nerve-realization adjunction.
 - The Dold–Kan correspondence, Eilenberg–Zilber theorem.

2 Homology and cohomology
 - Simplicial homology and cohomology with coefficients in an abelian group.
 - Cup and cap products, cohomology ring and homology module.
 - Invariance under homotopies and homotopy equivalences.

3 Manifolds
 - Manifolds.
 - Orientation, fundamental class.
 - Local systems.
 - Poincaré duality.

4 Homotopy
 - Homotopy groups, Hurewicz homomorphism, Hurewicz theorem.
 - Homotopy groups of spheres. Degree and Hopf invariant.
 - Fundamental groupoids and coverings, Seifert–van Kampen theorem, Galois theory of coverings.
 - Kan complexes, Kan’s fibrant replacement functor, weak equivalences.
 - Whitehead theorem.
 - Homotopy limits and colimits.
 - Generalized homology and cohomology theories, spectra.

5 Point-set theory
 - Topological spaces, continuous maps, bases and subbases, metric spaces, separability.
 - Subspaces, quotients, limits and colimits of topological spaces.
 - Singular simplicial sets of topological spaces and geometric realizations of simplicial sets.
 - Brouwer fixed point theorem.
 - Simplicial approximation theorem, Lefschetz fixed point theorem.
 - Nerve and hypernerve theorem.

6 Local homotopy theory
 - Sheaves and simplicial presheaves on topological spaces and sites.
 - Homotopy descent, Verdier hypercovering theorem.
 - Mayer–Vietoris properties.