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Abstract

In this paper, we consider the second-order nonlinear dynamic equation

(P22 (0) % + [ (27(1), 27 (1), 25(1)) =0,

on a time scalél'. Our goal is to establish some new oscillation results for this
equation. Here we assume thdt) < ¢t < £(¢) forall t andr, £ : T — T, and

use the notation™ (t) = z(7(t)), z° (t) = z(c(t)) andz*(t) = x(£(t)). We apply
results from the theory of lower and upper solutions for related dynamic equations
along with some additional estimates on positive solutions.

AMS Subject Classifications:34K11, 39A10, 39A99.
Keywords: Oscillation, functional dynamic equations, time scale, Riccati transforma-
tion technique.

1 Introduction

In 1988 the theory of time scales was introduced by Stefan Hilger in his Ph.D. The-
sis in order to unify continuous and discrete analysis (see [20]). Not only does this
unify the theories of differential equations and difference equations, but it also extends
these classical situations to cases “in between’- e.g., to so-caliéterence equa-
tions. Moreover, the theory can be applied to other different types of time scales. Since
its introduction, many authors have expounded on various aspects of this new theory,
and we refer specifically to the paper by Agarwal et al. [1] and the references cited
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therein. A book on the subject of time scales by Bohner and Peterson [6] summarizes
and organizes much of time scale calculus.

In recent years, there has been an increasing interest in studying the oscillation and
nonoscillation of solutions of dynamic equations on a time scale (i.e., a closed subset
of the real lineR). This has lead to many attempts to harmonize the oscillation theory
for the continuous and the discrete cases, to include them in one comprehensive theory,
and to extend the results to more general time scales. We refer the reader to the papers
[2-5,8-18, 21-23] and the references cited therein. To illustrate some of the results we
mention the work of Zhang and Shanliang [23] who considered the delay equation

22 () +qt) f(x(t —7)) =0, teT, (1.1)

wherer € Randt — 7 € T, f : R — R is continuous and strictly increasing, and
uf(u) > 0 foru # 0. By using comparison theorems they proved that the oscillation of
(1.1) is equivalent to the oscillation of the nonlinear dynamic equation

22 () +qt) f(2(t)) =0, teT (1.2)

and established some sufficient conditions for oscillation by applying the results estab-
lished in [17] for (1.2). In [19], we extend this result to show that the oscillation of

(p(O)z> (1) + (1) fa° () = 0

is equivalent to that of
(p(®)z™(8)" + g f(2(r(£))) = 0

When/ LAz& = 00, @ Is bounded ofT, and
tw P(t) p(t)

T(t) < o(t)forallt or 7(t) > o(t)forall t.
Since we are interested in the oscillatory and asymptotic behavior of solutions near

infinity, we assume throughout this paper that our time scale is unbounded above. We
assume, € T and it is convenient to assumg> 0. We define the time scale interval

{tOJ OO)T by
[to, 00)T := [to,00) N T.

Our main interest is to consider the general nonlinear dynamic equation
(p(B)2™ (1)) + f (1,27 (1), 27 (1), 25(1)) =0, ¢ € [to, 00)s, (1.3)

wheref € C(T x R* R) andp € C,4([to, o), (0, 00)7) satisfies

* 1
—At =00, tE€ [ty,00)T.
/t‘o p(t) [0 )T
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We shall assume that
T(t) <t <o(t) < ()

forallt € T and thatr, ¢ € C,.4(T, T). We assume also thatand¢ satisfy

lim 7(t) = co = lim &(%).

t—o00 t—o00

Our attention is restricted to those solutiong) of (1.3) which exist on some half-
line [t,, oo)r and satisfysup{|z(t)| : t > t,} > 0 for anyt, > t,. A solutionz of
(1.3) is said to be oscillatory if it is neither eventually positive nor eventually negative,
otherwise it is nonoscillatory. The equation itself is called oscillatory if all its solutions
are oscillatory.

We note that (1.3) in its general form includes several types of differential and dif-
ference equations with delay or advanced arguments or both In addition, different equa-
tions correspond to the choice of the time sc¢ald-or example, whefil = R, we have

o(t) =t, u(t) =0, A1) = f(b), /bf(t)At = /bf(t)dt, and so (1.3) includes the

nonlinear delay differential equatiotllq

(p()' (1)) + f (¢, 2(t), 27 (1), 25(t)) = 0.

b b—1
If T =Z, theno(t) =t + 1, u(t) = 1, f2(t) = Af(t), / fH)At = Zf(t), and a
special case of (1.3) is the nonlinear delay difference eaquation o
A (p(t)Az(t)) + f (t,z(t +1),27(t),25(t)) = 0,

whereA denotes the forward difference operator. Of course many more examples may
be given, and we will illustrate some of these in the examples in Section 3.

As observed above, equation (1.3) includes the delay and advanced argument cases.
Concerning the functiorf = f(¢,u, v, w) we will always assume that satisfies the
following condition (A):

A) f(t,u,v,w) =—f(t,—u, —v, —w) and f(t,u,v,w) > 0 if u,v,w > 0,t € T.

We begin by introducing the auxiliary functions

P(tva) :/a 1%7 77(15; a) = %, and V(t,a) = P(Lt;’a)

wherea € T. We may now establish the following result.

Lemma 1.1. Let y be a solution of1.3) which satisfies

y(t) >0, y2(t)>0, and (p(t)y*(t))” <0
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forall £(t) > o(t) >t > 7(t) > T > ty. Then we have
y () =t Ty (t), t=7() =T

and
yo () <v(t, Ty (1), &) >t>T.

Proof. Fort > T > t, we have

o(t)
) () = / yA(5)As

INA
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which yields
v (1) <yT (1) +p(r()y> ()P (o (t), 7(t)).
Dividing both sides of this inequality by" (¢) we obtain

v (1) p(r())y> (7 (1))
o S Pe®.r) (1.5)

Also we have

y(t) — y(T) = / y5()As

= p(r(®)y>(r(1))P(r(t),T)
and hence
y"(t) = p(r(1)y™ (r (1)) P(7(t), T).

prOAE(n) 1

Therefore we have

y@ S PEO.T) (©)
Therefore, (1.5) and (1.6) imply
y° (1) p(r(t)y>(r(t))
) 1+ =0 P(o(t), (1))
P(o(t), 7(t))
RN CONS
Po(t),T)
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This gives us the desired result

y"(t) > n(t, Ty’ (t).
The proof of the second inequality is similar. FBr< ¢t < o(t) < £(t), we have
SO R €8 Ag
v (t) —y () = / y=(s)As < p(a(t))y (O(t))/ —
o(t) o(t) p(s)

and so we have

(@), (1)), (1.7)

Also we have

so that

(1) p(o(t))y o)
L <1 APTETE P o)
P(E(t), (1))
= 6w
= v(t,T)

which yields the desired result
y* (1) <y (v, T).
This completes the proof of the lemma. O

We shall also need the following lemma which is often referred to as the Riccati
substitution technique.

Lemma 1.2 (See [11, Theorem 1])The linear equation
Lz = [p(t)z® ()] + q(t)z° = 0

is nonoscillatory if and only if there is a functionsatisfying the Riccati dynamic in-

equality

22

ZA + Q(t) + m <0 (18)

with p(t) 4+ u(t)z(t) > 0 for large t.
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In order to prove our main results, we need a method of studying separated boundary
value problems (SBVPs). Namely, we will define functions called upper and lower
solutions that, not only imply the existence of a solution of a SBVP, but also provide
bounds on the location of the solution. Consider the SBVP

—(p(H™)® +q()2” = f(t,a%), t€a,b)", (1.9)
z(a) = A, z(b) = B, (1.10)

where the functiong € C([a,b]* xR, R) andp, ¢ € C,q4([a, b]*") are such that(t) > 0
andq(t) > 0 on[a,b]" . We define the set

D, := {z € X: % is continuous angz* is delta differentiable ofu, b|*
and(pz®)2 is rd-continuous ofu, b},

where the Banach spa&e= C'([a, b]) is equipped with the norr - || defined by

|z|| == max |z(¢)|] forall zeX.
tG[a,b]T

A functionx is called a solution of the equatiea(p(t)y™) + ¢(t)y” = 0 on[a, b]*" if
z € D, and the equatior-(p(t)z*)* + ¢(t)z° = 0 holds for allt € [a,b]"". Next we
define for anyu, v € D, the sectofu, v]; by

[u,v]1 :={w e Dy :u<w< v}

Definition 1.3 (See [7, Definition 6.1]).We calla € D, a lower solution of the SBVP
(1.9)—(1.10) orja, b] provided

—(paA)A(t) +q(t)a’(t) < f(t,a’(t)) forall te€a, b]"‘2

and
ala) < A, «ab) < B.

Similarly, 5 € D is called an upper solution of the SBVP (1.9)-(1.10)@rb| provided
—(pB™)2 () + q(1)B7(t) > f(t,5° (1) forall &€ [a, b

and
B(a) > A, B(b) > B.

Theorem 1.4 (See [7, Theorem 6.5])Assume that there exist a lower solutierand
an upper solutiors of the SBVH1.9)1.10)such that

a(t) < p(t) forall ¢ € [a,b].

Then the SBVIPL.9)«(1.10)has a solution: € [a, 8], on|a, b].
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The following is an extension of the previous theorenuteo)r.

Theorem 1.5. Assume that there exists a lower solutiemnd an upper solutiow of
(1.9)with «(t) < B(t) for all t € [a, 00)r. Then

—(p(H)z)* + q(t)2” = f(t,27) (1.11)
has a solutione with z(a) = A andz € [«, 5]; on|[a, co)r.

Proof. It follows from Theorem 1.4 that for each> 1 there is a solutiom, (¢) of (1.9)
on[a, t,]r with

zo(a) = A, wz,(t,) = B(t,), and «at) < x,(t) < 5(t)

on[a, t,]r where{t,} is such thatlim ¢, = co. Thus, for any fixed: € N, z,,(t) is a

solution on[a, t,,|r satisfyinga(t) < z,,(t) < §(¢t) for all m > n. Hence, form > n,
the sequence,,(t) is pointwise bounded ofa, ¢, |r.

We claim that{z/,(¢)} is equicontinuous ofu, ¢y|r for any fixedN > 1. As g s
right-dense continuous, it is regulated. It follows thas bounded orja, t |1, and so
there exists a constagty > 0 such thatq(t)| < Qy forall t € [a, tx]r. Furthermore,
sincef is continuous ana,,(t) < §(t) forall ¢t € [a,ty]T, there is a constarity > 0
such that

=
=
8
S
=
v
I

lq(t)xy, (t) — f(t,27,(1))]
q(t)]xy, ()| + [ f(t, 27, ()]
Qnlz, ()] + Ky
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which gives
pM)eim(®)] = [p()zn (1) < [pla)zg(a)] + [My(ty — a)l.

Since {p(t)x,,(t)} is uniformly bounded ona, ty|r for all m > N, it follows that
Ip(a)z5(a)| < Ly for someLy > 0 and allm > N. Consequently,

Ip(t)zon(t)] < Ly + |[My(ty — a)| := Cl,
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and, immediately, we have

‘xﬁ(t)’ < pC’—N < CNPN forall te [a,t]\/]']r

()

sincel/p(t) is continuous on the compact interyal ¢ y]r. Consequently,

/S "8 () Au

SCNPN|t—S|<E

[ (1) = 2m(s)] =

for all t,s € [a,ty]r provided|t —s| < § = Hence the claim holds. So

€
CnPy
by Ascoli—-Arzela and a standard diagonalization argumgnt,(¢)} contains a subse-
quence which converges uniformly on all compact subinterjvals,|r of [a,c0)r to a

solutionz(t), which is the desired solution of (1.11) withe [«, 5]; on[a,o00)r. O

2 Main Results

Our first result is for the case whéhit, u, v, w) satisfies the following condition (C):

(C) Foreach fixed € T andu,v > 0, f is nonincreasing i and for fixedu, w > 0,
f is nondecreasing in for v > 0 and for fixedv, w > 0 f is nondecreasing in
foru > 0.

Theorem 2.1. Assume condition@) and (C) hold and letdM/ > 0. Then any solution
z of (1.3)with |x(t)| < M is oscillatory in case

‘/00 P(t,a)f (t,a,an(t,a), Mv(t,a)) At| = oo, (2.1)

for all o« # 0 wheren(t, a), v(t,a) are given in(1.4).

Proof. If not, let « be a bounded nonoscillatory solution which, in view of condition
(A), we may assume satisfies

u(t) > 0, u(r(t)) >0, t>T >t.

Consequently,
[p(t)u® (] = —f (t,u (1), u” (1), u(1)) <0
(t

fort > T and sop(t)u”(t) is decreasing fot > 7.
We claim thatp(t)u”(t) > 0 on [T,00)r. If not, there is at; > T such that
p(t)u®(t;) < 0. Then

p(t)us(t) < p(t)u(t), ¢ € [t,00)r,
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and therefore

Integrating, we obtain

u(t) —u(ty) < / u®(s)As < p(tl)uA(tl)/ As — —00

t1 t1 p(S)

ast — oo, which impliesu(t) is eventually negative. This contradiction proves the
claim. Hence, we conclude that for all> T

u(t) >0, u(r(t) >0, ud(t)>0, (p(Hu™®)" <o0.

From Lemma 1.1, we have
u(r(t)) = n(t, T)u(t) and wu((t)) < v(t, T)u”(t)
for(t) > o(t) > t > 7(t) > T. By the monotonicity assumption ghwe have

0 = [p(u(B)] + f (t,u” (1), u" (1), u*(t)) (2.2)
> [p)u ()] + f (tu” (), n(t, T)u? (8), v(t, T)u’ (t))

fort > T. Now, if we set

F(t,u?(t)) == f (& (@), nt, T)u”(t), v(t, T)u’ (1)) ,

then (2.2) shows tha8(¢)
p(t)ut]® + F(t,u(t) =
p(t)a™ ()2 + F(t,a”(t)) =
1.5, the BVP

:= wu(t) is an upper solution for the dynamic equation
0. Also, the constant function(t) := w(7) satisfies
0, and sax(t) is a lower solution. Therefore, by Theorem

[p(t)y*]% + F(t,y7 (1) =0, y(T) =u(T)
has a solutiorny with
w(T) <y(t) <u(t), t>T.

It follows thattlim p(t)y™(t) := L exists and is finite. 1. < 0 or if L = —oo, p(t)y(t)
would be eventually negative. Hen&e> 0. Integration forl” < s < T implies

()T — p(s)y™(s) + / F(r.y (r) Ar = 0.
Letting 7T — oo We obtain

Pt =L+ [ Fere)ar= [T Ry e)ar
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It follows that )

yA@)z-——:/many%r»A%

p(s)
Integrating again fof” < ¢ < ¢, we obtain

y(t) —y(@) :/;yA(smsz/;ﬁ/:o F(r,y°(r))ArAs.

L(t) = /; ]ﬁ /:O F(r,y°(r))ArAs

I(t) ::/{ P(r,t)F(r,y° (r))Ar + /too P(t,t)F(r,y°(r))Ar,

then we have that (t) > I5(t). Indeed, since

If we let

and

Ly (t) = P(, ) F(t,y7 (1) + L) /OO F(r,y”(r)Ar + P(t,1)(—F(t,y° (1)),

o(t)
mwww%ﬁﬂ Fr.y° (r)) Ar > 0.

SoI,(t) — I,(t) is increasing. Furthermore, sindgf) = I,(f) = 0, the inequality
follows. Consequently, far > ¢ > T', we have

Mﬂ®=/ﬂ

>

/ (r,y°(r))ArAs

Ar+/t P(t,t)F(r,y°(r))Ar (2.3)

[ it
J e

o [ s
0+ [ 7t

"U’U

>

From (2.3) we have

b+ [ P(r ))Ar > /tt P(r,t)F(r,y° (r))Ar.
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t
Sincey(t) < u(t) < M for someM > 0 and/ P(r,t)F(r,y° (r))Ar is an increasing
function of¢, it follows that t

/{OO P(r,t)F(r,y°(r))Ar < oco.

By the monotonicity off, we have

/00 P(r,T)f (r,y(T),n(r, T)y(T),v(r,T)M) Ar < cc.

By lettinga = y(7"), we obtain a contradiction to (2.1). This completes the proatf!

The next result shows that a converse of Theorem 2.1 is true under an additional

assumption.
Theorem 2.2. Assumef satisfies conditiongA) and (C) and that

liminfn(t,a) ==k >0 and limsupv(t,a) =K < oo, (2.4)

t—o0 t—o00

wheren(t,a), v(t,a) are defined in(1.4). Also, assume thaP(o(t),a)/P(t,a) is
bounded and led/ > 0. Then, ify is any nonoscillatory solution of

Py + f (6,7 (1), y" (), y(t)) =0 (1.3)

with |y(t)| < M, it follows that

’/ taakMK)At<oo

wherek < kandK > K.

Proof. Note that for anys

'/wP(U(t)aa)f(t,ﬁ,...,g)At‘ “

‘/OOP(t,a)f(t,ﬁ,...,ﬁ)At .

sinceP(o(t),a)/P(t,a) is bounded ofT.
Suppose (2.4) holds. Then for any> 0 with € < k, there existg > t, such that
n(t,a) > k—e =: k providedt > ¢ and there exist§ > t, such thav(t,a) < K +¢ =

if, and only Iif,
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K providedt > T. Now assume (1.3) has a bounded nonoscillatory solution. Then by
Theorem 2.1

< 0

’/OO P(t,a)f (t,a,an(t,a), Mv(t,a)) At

for all o # 0. By the monotonicity assumption ¢f we have

/OO P(t,a)f (t,a, al%,Mf() At < 00

which proves the result. O

The previous result says that condition (2.4) is sufficient in order to replace the
auxiliary functionsn(t,a), v(t,a) given by (1.4) with upper bounds. Our next result
gives a sufficient condition for

(p(O)y>) + f (£ y7 (1), y7(1),4(t)) =0 (1.3)
to have bounded nonoscillatory solutions.

Theorem 2.3. Assumef satisfies conditionfA) and (C). If

‘/OO P(o(t),a)f (t,oz,oz, %) At‘ < 00, (2.5)

forall o # 0 and

}%/toof<s,a,a,%> As < M

for someM > 0 and allt > a, then(1.3) has a bounded nonoscillatory solution.

Proof. If (2.5) holds, assume to be specific that> 0 and let0 < § < «. Choose
T > t; € T such that (¢t) > ¢, for ¢t > T and such that

| rew.or (t,w, g) ar<?

T

Definey,(t) = 5 fort > t, and

5 / T(Plo(s),a) — P(T,a))f (,55(5), vi(s), 45 (s)) As, ¢ < T,

ynJrl(t) = [e's]
5 / (P(o(s)a) — P(t,a))f (5.42(5), (). 46 (5)) As, t>T.

Observet; < 7(t) <t <o(t) <{(t)forallt > T. We claim that

g

5 <y,(t)<pB t>T and alln>0. (2.6)
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By construction the claim holds fay,(¢). Notice that whert < T, we haver(t) < T
and soy,(7(t)) < B asy>(t) = 0forall t € T less tharll. Assume the inequality
holds fory,,(t), 1 < m < n. Thenfort > T

Ymi1(t) = ﬁ—/too [P(o(s),a) = P(t,a)] f (s,5m(5), ym(5), y5a(s)) As

v

5 / " P(r(s), )1 (5 45(5), (), () D
- /OO P(o(s),a)f (s,ﬁ,ﬁ, g) As

t

v

N @

>

Furthermore, since > T, we havey?, (s),y",(s),35,(s) are all positive. Hence by
condition (A)

[P(a(s),a) = P(t.a)] f (s,57(5), ym(5), y5 () = 0

for s > t > T. Consequentlyy,,.1(t) < g fort > T. Therefore, by induction, (2.6)
holds. It remains to show that the det,(¢)} -, is equicontinuous. To do this, we show
that{y:(t)} " is uniformly bounded. It follows that

t

2] = 0= [ [ =P (9,209 5(5) s
- [P(o(0).0) ~ Plo(0),0) ] (0,500 05(0) ]

_ / " PR, a)f (5, 5(), 55,1 () A
1r(f LAS)At  (5.3(5),0(5), 5(5)) As

t 1 Ay ) )
/ IE) As + _> f (5’ yn(8)7 yn(s), yg(S)) As

IA
|-
;ﬁ\

8

—

/N

»

R

L

N—
>

»

I
< =
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Therefore, the Ascoli—Arzela theorem along with a standard diagonalization argument
yields a subsequence 0, ()}, -, which converges uniformly on compact subintervals

of [T, 0o)r to a solutiony(¢) of (1.3) satisfying?/2 < y(t) < 8,t > T'. This proves the
theorem. O]

To extend Theorems 2.1 and 2.2 to unbounded solutions, we introduce the ofiss
functions¢ such thatp(u) denotes a continuous nondecreasing function sitisfying

up(u) > 0, u # 0 with
/ioo d_u .
1 B(u) '

We will say thatf(t,u, v, w) satisfies condition (H) provided for some c & there
existsc £ 0 such that for alt > T

g ft,u,n(t, T)u, v(t, T)u)
ful>e ¢(u)

for some positive constait We may now prove the following result.

>E|f (t,e,n(t, T)e,v(t,T)c)|

Theorem 2.4. Suppose) € ®. Assumef satisfies conditiongA), (C), and (H). Then
all solutions of

(p(®)y™)> + f (v (1), y7 (1), 45(1)) =0 (1.3)
are oscillatory in case

‘/ kP(t,a)f (t,c,n(t, T)a,v(t, T)a) At| = 0o (2.7)
holds for alla« # 0 and for some sufficiently large € T, wherek is the constant
appearing in conditior{H).

Proof. Assume (2.7) holds for alk # 0 and letu be a nonoscillatory solution of (1.3)
with
u(t) >0, wu(r(t)) >0, t>T.

As in the proof of Theorem 2.1, the BVP

[p(t)y°]* + F(t,y7(t) =0, y(T) =w(T)

has a solutiony with
w(T) <y(t) <u(t), t>T,

whereF(t,u) = f(t,u,n(t,T)u,v(t,T)u). Also, as in the proof of Theorem 2.1, for
t>t>T,we have

/{ y2(s)As > /t P(r, D) F(r,y° (r))Ar. (2.8)
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We next define the continuously differentiable real-valued function

‘s
uo O(8)’

whereu, := y(T') > 0. Observe tha&'(u) = 1/¢(u). By the Btzsche chain rule [6,
Theorem 1.90],

(Goy)® (/ oy o )y%) - (/01 ¢<ycih<t>>) v = J:”((tg))’

wherey,(t) = y(t) + h,u(t)yA(t) < y?(t). Consequently,

G(u) =

(Goy)>(t) =

Now multiplying (2.8) by(¢(y°(5))) ", we obtain

1 ¢ i
P cb(y"(S))AS = M/t P(r,t)F(r,y°(r))Ar

Fear()
> [ Ped o) ©

> [t kP(r,t)F(r,c)Ar

for sufficiently larget (by condition (H)) where: := u(T) > 0. Furthermore, since
p(t)y>(t) > 0, we havey®(t) > 0. It follows that lim y(t) = Ly with 0 < L < o0

and so
v dy L2y

lim G = lim —_— = — =L < o0.
i G =l | Sy = ), oW
Therefore ag — oo we have

/OO<G o Z/)A(S) = lim [G(y(t)) _ G(y(T))] < .

T t—o00

It follows that

[(G 0 y) ¢ / kP (r 8 F(r, ) Ar.

However the left side of the above is boundedtas: oo whereas the right side is
unbounded by assumption (2.7). This contradiction shows that all solutions of (1.3) are
oscillatory. ]
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3 Examples

We would like to illustrate some of the results above by means of examples. In the first
example we need Lemma 1.1.

Example 3.1. Consider the linear functional dynamic equation
(p(t)y™)> +a(t)y” () + )y (1) + s(t)y*(t) = 0, (3.1)
wherep™ (t) > 0 on[ty, co)r andp(t), q(t),r(t), s(t) > 0,t > t,. If we set
Qt) == q(t) +r(®)n(t, T) + s(t)
fort > T > ty, then (3.1) is oscillatory in case
(p(t)y™)> +2Q(1)y” =0 (3-2)

is oscillatory forsom@ < \ < 1. To see this, suppose thais a nonoscillatory solution
of (3.1) withu(t) > 0, u(7(¢t)) > 0,t > T. Then, as in the work of Theorem 2.1, we
have for allt > T

u(t) >0, w(r(t)) >0, u?(t)>0, [pt)u®t)]> <0.

Then, by Lemma 1.1

(P(®)u)™ + (q(t) + r(On(E.T) + s(t) u?(t) <0, t>T. (3.3)
Then withz(t) := Y%j)(t), using (3.3) we see thatt) satisfies the Riccati dynamic

inequality (1.8) withg(t) = Q(t). By Lemma 1.2, this means that the equation

(P ()" + Q) (1) =0

is nonoscillatory and so by the Sturm—Picone comparison theorem [16, Lemma 6], (3.2)
is also nonoscillatory. This contradiction shows that (3.1) is oscillatory. If we apply a
specific oscillation criterion and le(t) = 1, we conclude that (3.1) is oscillatory if

lim inf t/too (q(u) +r(u)n(t, T) + s(u)) Au > i

(see [15, Example 3.4]).

Example 3.2.Let f(¢,u, v, w) := q(t)u” + r(t)v™*, wherey,, v > 0 are the quotients

of odd positive integers. We assume also #{a}, »(¢) > 0 for all larget and are rd-
continuous. lItis not difficult to show that both conditions (A) and (C) hold. By Theorem
2.1 all bounded solutions of

(p(t)y™)> + () (u” ()™ +r(t)(v7(8) = 0 (3.4)
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are oscillatory if

/OO kP (t,a) [(q(t)a)™ 4 r(t)(akn(t,a))™] At = oo (3.5)

for all « # 0 and for some: € (0,1). Now supposey;,vy, > 1 and leto(u) = u”,
wherel < v < min{v;, 7, }. Itis notdifficult to show thayf (¢, u, v) = p(t)u™ +q(t)v"?
satisfies condition (H) witlt < |¢|™7. Therefore, from Theorem 2.4, we conclude that
all solutions of (3.4) are oscillatory provided (3.5) holds.

As an illustration of the situation whefiinvolves an advanced argument, we con-
sider the following example.

Example 3.3. Suppose that

q(t)u™ +r(t)vr?
1+ s(t)w?

flt,u,v,w) :=

wheres(t) > 0 is rd-continuous ands, 2, ¢(t),r(t) > 0. From Theorem 2.1, we
conclude that all bounded solutions of

ava L OO + )y ()2
R [ ER oo

are oscillatory in case

* it (A0 O
[ oo (S ) A

for all « # 0, whereM > 0 is the upper bound of the oscillatory solutions of (3.6).

The results in the last two examples may be regarded as extensions of some oscilla-
tion criteria due to Atkinson [5].

References

[1] Ravi P. Agarwal, Martin Bohner, Donal O’Regan, and Allan Peterson. Dynamic
equations on time scales: a survdyComput. Appl. Math141(1-2):1-26, 2002.
Dynamic equations on time scales.

[2] Ravi P. Agarwal, Martin Bohner, and Samir H. Saker. Oscillation of second order
delay dynamic equation€an. Appl. Math. Q.13(1):1-17, 2005.

[3] Ravi P. Agarwal, Donal O’'Regan, and S. H. Saker. Oscillation criteria for
second-order nonlinear neutral delay dynamic equatichaMiath. Anal. Appl.
300(1):203-217, 2004.



104 Raegan Higgins

[4] Elvan Akin-Bohner, Martin Bohner, and Samir H. Saker. Oscillation criteria for a
certain class of second order Emden-Fowler dynamic equatkelestron. Trans.
Numer. Anal.27:1-12 (electronic), 2007.

[5] F. V. Atkinson. On second-order non-linear oscillatiofacific J. Math, 5:643—
647, 1955.

[6] Martin Bohner and Allan Petersoiynamic Equations on Time Scales: An Intro-
duction with ApplicationsBirkhauser Boston Inc., Boston, MA, 2001.

[7] Martin Bohner and Allan PetersonAdvnces in Dynamic Equations on Time
Scales Birkhauser Boston Inc., Boston, MA, 2003.

[8] Martin Bohner and Samir H. Saker. Oscillation criteria for perturbed nonlinear
dynamic equationdMath. Comput. Modellingd0(3-4):249-260, 2004.

[9] Martin Bohner and Samir H. Saker. Oscillation of second order nonlinear dynamic
equations on time scaleRocky Mountain J. Math34(4):1239-1254, 2004.

[10] Lynn Erbe. Oscillation criteria for second order nonlinear delay equatoasad.
Math. Bull, 16:49-56, 1973.

[11] Lynn Erbe. Oscillation criteria for second order linear equations on a time scale.
Canad. Appl. Math. Quart9(4):345-375 (2002), 2001.

[12] Lynn Erbe and Raegan Higgins. Some oscillation results for second-order dynamic
functional equationsAdv. Dyn. Syst. Appl3(1):73—-88, 2008.

[13] Lynn Erbe and Allan Peterson. Riccati equations on a measure chdynhamic
systems and applications, Vol. 3 (Atlanta, GA, 199#)ges 193-199. Dynamic,
Atlanta, GA, 2001.

[14] Lynn Erbe and Allan Peterson. Boundedness and oscillation for nonlinear dynamic
equations on a time scal@roc. Amer. Math. Soc132(3):735—-744 (electronic),
2004.

[15] Lynn Erbe and Allan Peterson. Comparison theorems of Hille-Wintner type for
dynamic equations on time scaleBroc. Amer. Math. Soc133(11):3243-3253
(electronic), 2005.

[16] Lynn Erbe, Allan Peterson, and Pawéhak. Comparison theorems for linear
dynamic equations on time scalels Math. Anal. Appl.275(1):418-438, 2002.

[17] Lynn Erbe, Allan Peterson, and Samir H. Saker. Oscillation criteria for second-
order nonlinear dynamic equations on time scalds.London Math. Soc. (2)
67(3):701-714, 2003.



Second-Order Functional Dynamic Equations 105

[18] Lynn Erbe, Allan Peterson, and Samir H. Saker. Kamenev-type oscillation cri-
teria for second-order linear delay dynamic equatioynam. Systems Appl.
15(1):65-78, 2006.

[19] Raegan J. Higgin®scillation Theory of Dynamic Equations on Time ScalRdsD
thesis, University of Nebraska-Lincoln, 2008.

[20] Stefan Hilger. Analysis on measure chains—a unified approach to continuous and
discrete calculusResults Math.18(1-2):18-56, 1990.

[21] Yeter Sahiner. Oscillation of second-order delay differential equations on time
scales.Nonlinear Anal, 63(5-7):1073-1080 (electronic), 2005.

[22] Samir H. Saker. Oscillation of nonlinear dynamic equations on time scajgs.
Math. Comput.148(1):81-91, 2004.

[23] B. G. Zhang and Zhu Shanliang. Oscillation of second-order nonlinear delay dy-
namic equations on time scaléSomput. Math. Appl.49(4):599-609, 2005.



