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Abstract

In this paper, we consider the second-order nonlinear dynamic equation(
p(t)x∆(t)

)∆
+ f

(
t, xσ(t), xτ (t), xξ(t)

)
= 0,

on a time scaleT. Our goal is to establish some new oscillation results for this
equation. Here we assume thatτ(t) ≤ t ≤ ξ(t) for all t andτ, ξ : T → T, and
use the notationxτ (t) = x(τ(t)), xσ(t) = x(σ(t)) andxξ(t) = x(ξ(t)). We apply
results from the theory of lower and upper solutions for related dynamic equations
along with some additional estimates on positive solutions.

AMS Subject Classifications:34K11, 39A10, 39A99.
Keywords: Oscillation, functional dynamic equations, time scale, Riccati transforma-
tion technique.

1 Introduction

In 1988 the theory of time scales was introduced by Stefan Hilger in his Ph.D. The-
sis in order to unify continuous and discrete analysis (see [20]). Not only does this
unify the theories of differential equations and difference equations, but it also extends
these classical situations to cases “in between”– e.g., to so-calledq-difference equa-
tions. Moreover, the theory can be applied to other different types of time scales. Since
its introduction, many authors have expounded on various aspects of this new theory,
and we refer specifically to the paper by Agarwal et al. [1] and the references cited
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therein. A book on the subject of time scales by Bohner and Peterson [6] summarizes
and organizes much of time scale calculus.

In recent years, there has been an increasing interest in studying the oscillation and
nonoscillation of solutions of dynamic equations on a time scale (i.e., a closed subset
of the real lineR). This has lead to many attempts to harmonize the oscillation theory
for the continuous and the discrete cases, to include them in one comprehensive theory,
and to extend the results to more general time scales. We refer the reader to the papers
[2–5,8–18,21–23] and the references cited therein. To illustrate some of the results we
mention the work of Zhang and Shanliang [23] who considered the delay equation

x∆∆(t) + q(t)f(x(t− τ)) = 0, t ∈ T, (1.1)

whereτ ∈ R and t − τ ∈ T, f : R → R is continuous and strictly increasing, and
uf(u) > 0 for u 6= 0. By using comparison theorems they proved that the oscillation of
(1.1) is equivalent to the oscillation of the nonlinear dynamic equation

x∆∆(t) + q(t)f(xσ(t)) = 0, t ∈ T (1.2)

and established some sufficient conditions for oscillation by applying the results estab-
lished in [17] for (1.2). In [19], we extend this result to show that the oscillation of(

p(t)x∆(t)
)∆

+ q(t)f(xσ(t)) = 0

is equivalent to that of (
p(t)x∆(t)

)∆
+ q(t)f(x(τ(t))) = 0

when
∫ ∞

t0

1

p(t)
∆t = ∞,

µ(t)

p(t)
is bounded onT, and

τ(t) ≤ σ(t) for all t or τ(t) ≥ σ(t) for all t.

Since we are interested in the oscillatory and asymptotic behavior of solutions near
infinity, we assume throughout this paper that our time scale is unbounded above. We
assumet0 ∈ T and it is convenient to assumet0 > 0. We define the time scale interval
[t0,∞)T by

[t0,∞)T := [t0,∞) ∩ T.

Our main interest is to consider the general nonlinear dynamic equation(
p(t)x∆(t)

)∆
+ f

(
t, xσ(t), xτ (t), xξ(t)

)
= 0, t ∈ [t0,∞)T, (1.3)

wheref ∈ C(T× R3, R) andp ∈ Crd([t0,∞)T, (0,∞)T) satisfies∫ ∞

t0

1

p(t)
∆t = ∞, t ∈ [t0,∞)T.
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We shall assume that
τ(t) ≤ t ≤ σ(t) ≤ ξ(t)

for all t ∈ T and thatτ, ξ ∈ Crd(T, T). We assume also thatτ andξ satisfy

lim
t→∞

τ(t) = ∞ = lim
t→∞

ξ(t).

Our attention is restricted to those solutionsx(t) of (1.3) which exist on some half-
line [tx, ∞)T and satisfysup{|x(t)| : t > t0} > 0 for any t0 ≥ tx. A solutionx of
(1.3) is said to be oscillatory if it is neither eventually positive nor eventually negative,
otherwise it is nonoscillatory. The equation itself is called oscillatory if all its solutions
are oscillatory.

We note that (1.3) in its general form includes several types of differential and dif-
ference equations with delay or advanced arguments or both In addition, different equa-
tions correspond to the choice of the time scaleT. For example, whenT = R, we have

σ(t) = t, µ(t) = 0, f∆(t) = f ′(t),
∫ b

a

f(t)∆t =

∫ b

a

f(t)dt, and so (1.3) includes the

nonlinear delay differential equation

(p(t)x′(t))
′
+ f

(
t, x(t), xτ (t), xξ(t)

)
= 0.

If T = Z, thenσ(t) = t + 1, µ(t) = 1, f∆(t) = ∆f(t),
∫ b

a

f(t)∆t =
b−1∑
t=a

f(t), and a

special case of (1.3) is the nonlinear delay difference equation

∆ (p(t)∆x(t)) + f
(
t, x(t + 1), xτ (t), xξ(t)

)
= 0,

where∆ denotes the forward difference operator. Of course many more examples may
be given, and we will illustrate some of these in the examples in Section 3.

As observed above, equation (1.3) includes the delay and advanced argument cases.
Concerning the functionf = f(t, u, v, w) we will always assume thatf satisfies the
following condition (A):

(A) f(t, u, v, w) = −f(t,−u,−v,−w) andf(t, u, v, w) > 0 if u, v, w > 0, t ∈ T.

We begin by introducing the auxiliary functions

P (t, a) =

∫ t

a

∆s

p(s)
, η(t, a) =

P (τ(t), a)

P (σ(t), a)
, and ν(t, a) =

P (ξ(t), a)

P (σ(t), a)
, (1.4)

wherea ∈ T. We may now establish the following result.

Lemma 1.1. Let y be a solution of(1.3)which satisfies

y(t) > 0, y∆(t) > 0, and
(
p(t)y∆(t)

)∆ ≤ 0
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for all ξ(t) ≥ σ(t) ≥ t ≥ τ(t) ≥ T ≥ t0. Then we have

yτ (t) ≥ η(t, T )yσ(t), t ≥ τ(t) ≥ T

and
yξ(t) ≤ ν(t, T )yσ(t), ξ(t) ≥ t ≥ T.

Proof. For t > T ≥ t0 we have

yσ(t)− yτ (t) =

∫ σ(t)

τ(t)

y∆(s)∆s

=

∫ σ(t)

τ(t)

1

p(s)
p(s)y∆(s)∆s

≤ p(τ(t))y∆(τ(t))

∫ σ(t)

τ(t)

1

p(s)
∆s

which yields
yσ(t) ≤ yτ (t) + p(τ(t))y∆(t)P (σ(t), τ(t)).

Dividing both sides of this inequality byyτ (t) we obtain

yσ(t)

yτ (t)
≤ 1 +

p(τ(t))y∆(τ(t))

yτ (t)
P (σ(t), τ(t)). (1.5)

Also we have

yτ (t)− y(T ) =

∫ τ(t)

T

y∆(s)∆s

=

∫ τ(t)

T

1

p(s)
p(s)y∆(s)∆s

≥ p(τ(t))y∆(τ(t))

∫ τ(t)

T

1

p(s)
∆s

= p(τ(t))y∆(τ(t))P (τ(t), T )

and hence
yτ (t) ≥ p(τ(t))y∆(τ(t))P (τ(t), T ).

Therefore we have
p(τ(t))y∆(τ(t))

yτ (t)
≤ 1

P (τ(t), T )
. (1.6)

Therefore, (1.5) and (1.6) imply

yσ(t)

yτ (t)
≤ 1 +

p(τ(t))y∆(τ(t))

yτ (t)
P (σ(t), τ(t))

≤ 1 +
P (σ(t), τ(t))

P (τ(t), T )

=
P (σ(t), T )

P (τ(t), T )
.
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This gives us the desired result

yτ (t) > η(t, T )yσ(t).

The proof of the second inequality is similar. ForT < t ≤ σ(t) ≤ ξ(t), we have

yξ(t)− yσ(t) =

∫ ξ(t)

σ(t)

y∆(s)∆s ≤ p(σ(t))y∆(σ(t))

∫ ξ(t)

σ(t)

∆s

p(s)

and so we have
yξ(t)

yσ(t)
≤ 1 +

p(σ(t))y∆(σ(t))

yσ(t)
P (ξ(t), σ(t)). (1.7)

Also we have
yσ(t) ≥ y(T ) + p(σ(t))y∆(σ(t))P (σ(t), T )

so that
yσ(t)

p(σ(t))y∆(σ(t))
≥ y(T )

p(σ(t))y∆(σ(t))
+ P (σ(t), T ).

Hence, from (1.7) we have

yξ(t)

yσ(t)
≤ 1 +

p(σ(t))y∆σ(t)

yσ(t)
P (ξ(t), σ(t))

≤ 1 +
P (ξ(t), σ(t))

P (σ(t), T )

= ν(t, T )

which yields the desired result

yξ(t) ≤ yσ(t)ν(t, T ).

This completes the proof of the lemma.

We shall also need the following lemma which is often referred to as the Riccati
substitution technique.

Lemma 1.2 (See [11, Theorem 1]).The linear equation

Lx ≡ [p(t)x∆(t)]∆ + q(t)xσ = 0

is nonoscillatory if and only if there is a functionz satisfying the Riccati dynamic in-
equality

z∆ + q(t) +
z2

p(t) + µ(t)z
≤ 0 (1.8)

with p(t) + µ(t)z(t) > 0 for large t.
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In order to prove our main results, we need a method of studying separated boundary
value problems (SBVPs). Namely, we will define functions called upper and lower
solutions that, not only imply the existence of a solution of a SBVP, but also provide
bounds on the location of the solution. Consider the SBVP

−(p(t)x∆)∆ + q(t)xσ = f(t, xσ), t ∈ [a, b]κ
2

, (1.9)

x(a) = A, x(b) = B, (1.10)

where the functionsf ∈ C([a, b]κ
2×R, R) andp, q ∈ Crd([a, b]κ

2

) are such thatp(t) > 0

andq(t) ≥ 0 on [a, b]κ
2

. We define the set

D1 := {x ∈ X : x∆ is continuous andpx∆ is delta differentiable on[a, b]κ

and(px∆)∆ is rd-continuous on[a, b]κ
2},

where the Banach spaceX = C([a, b]) is equipped with the norm‖ · ‖ defined by

‖x‖ := max
t∈[a,b]T

|x(t)| for all x ∈ X.

A functionx is called a solution of the equation−(p(t)y∆)∆ + q(t)yσ = 0 on [a, b]κ
2

if
x ∈ D1 and the equation−(p(t)x∆)∆ + q(t)xσ = 0 holds for allt ∈ [a, b]κ

2

. Next we
define for anyu, v ∈ D1 the sector[u, v]1 by

[u, v]1 := {w ∈ D1 : u ≤ w ≤ v}.

Definition 1.3 (See [7, Definition 6.1]).We callα ∈ D1 a lower solution of the SBVP
(1.9)–(1.10) on[a, b] provided

−(pα∆)∆(t) + q(t)ασ(t) ≤ f(t, ασ(t)) for all t ∈ [a, b]κ
2

and
α(a) ≤ A, α(b) ≤ B.

Similarly,β ∈ D1 is called an upper solution of the SBVP (1.9)-(1.10) on[a, b] provided

−(pβ∆)∆(t) + q(t)βσ(t) ≥ f(t, βσ(t)) for all t ∈ [a, b]κ
2

and
β(a) ≥ A, β(b) ≥ B.

Theorem 1.4 (See [7, Theorem 6.5]).Assume that there exist a lower solutionα and
an upper solutionβ of the SBVP(1.9)–(1.10)such that

α(t) ≤ β(t) for all t ∈ [a, b].

Then the SBVP(1.9)–(1.10)has a solutionx ∈ [α, β]1 on [a, b].
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The following is an extension of the previous theorem to[a,∞)T.

Theorem 1.5. Assume that there exists a lower solutionα and an upper solutionβ of
(1.9)with α(t) ≤ β(t) for all t ∈ [a,∞)T. Then

−(p(t)x∆)∆ + q(t)xσ = f(t, xσ) (1.11)

has a solutionx with x(a) = A andx ∈ [α, β]1 on [a,∞)T.

Proof. It follows from Theorem 1.4 that for eachn ≥ 1 there is a solutionxn(t) of (1.9)
on [a, tn]T with

xn(a) = A, xn(tn) = β(tn), and α(t) ≤ xn(t) ≤ β(t)

on [a, tn]T where{tn} is such thatlim
n→∞

tn = ∞. Thus, for any fixedn ∈ N, xm(t) is a

solution on[a, tn]T satisfyingα(t) ≤ xm(t) ≤ β(t) for all m ≥ n. Hence, form ≥ n,
the sequencexm(t) is pointwise bounded on[a, tn]T.

We claim that
{
x∆

m(t)
}

is equicontinuous on[a, tN ]T for any fixedN ≥ 1. As q is
right-dense continuous, it is regulated. It follows thatq is bounded on[a, tN ]T, and so
there exists a constantQN > 0 such that|q(t)| ≤ QN for all t ∈ [a, tN ]T. Furthermore,
sincef is continuous andxm(t) ≤ β(t) for all t ∈ [a, tN ]T, there is a constantKN > 0
such that ∣∣[p(t)x∆

m(t)]∆
∣∣ = |q(t)xσ

m(t)− f(t, xσ
m(t))|

≤ q(t)|xσ
m(t)|+ |f(t, xσ

m(t))|
≤ QN |xσ

m(t)|+ KN

≤ QN‖β‖+ KN

=: MN

for all t ∈ [a, tN ]T. It follows that

∣∣p(t)x∆
m(t)− p(a)x∆

m(a)
∣∣ =

∫ t

a

[p(s)x∆
m(s)]∆ ∆s

≤ MN(t− a)

≤ MN(tN − a)

which gives

p(t)|x∆
m(t)| = |p(t)x∆

m(t)| ≤ |p(a)x∆
m(a)|+ |MN(tN − a)|.

Since{p(t)xm(t)} is uniformly bounded on[a, tN ]T for all m ≥ N , it follows that
|p(a)x∆

m(a)| ≤ LN for someLN > 0 and allm ≥ N . Consequently,∣∣p(t)x∆
m(t)

∣∣ ≤ LN + |MN(tN − a)| := CN ,
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and, immediately, we have

|x∆
m(t)| ≤ CN

p(t)
≤ CNPN for all t ∈ [a, tN ]T

since1/p(t) is continuous on the compact interval[a, tN ]T. Consequently,

|xm(t)− xm(s)| =
∣∣∣∣∫ t

s

x∆
m(u) ∆u

∣∣∣∣ ≤ CNPN |t− s| < ε

for all t, s ∈ [a, tN ]T provided |t − s| < δ =
ε

CNPN

. Hence the claim holds. So

by Ascoli–Arzela and a standard diagonalization argument,{xm(t)} contains a subse-
quence which converges uniformly on all compact subintervals[a, tN ]T of [a,∞)T to a
solutionx(t), which is the desired solution of (1.11) withx ∈ [α, β]1 on [a,∞)T.

2 Main Results

Our first result is for the case whenf(t, u, v, w) satisfies the following condition (C):

(C) For each fixedt ∈ T andu, v > 0, f is nonincreasing inw and for fixedu, w > 0,
f is nondecreasing inv for v > 0 and for fixedv, w > 0 f is nondecreasing inu
for u > 0.

Theorem 2.1. Assume conditions(A) and (C) hold and letM > 0. Then any solution
x of (1.3)with |x(t)| ≤ M is oscillatory in case∣∣∣∣∫ ∞

P (t, a)f (t, α, αη(t, a), Mν(t, a)) ∆t

∣∣∣∣ = ∞, (2.1)

for all α 6= 0 whereη(t, a), ν(t, a) are given in(1.4).

Proof. If not, let u be a bounded nonoscillatory solution which, in view of condition
(A), we may assume satisfies

u(t) > 0, u(τ(t)) > 0, t ≥ T ≥ t0.

Consequently,
[p(t)u∆(t)]∆ = −f

(
t, uσ(t), uτ (t), uξ(t)

)
< 0

for t ≥ T and sop(t)u∆(t) is decreasing fort ≥ T .
We claim thatp(t)u∆(t) > 0 on [T,∞)T. If not, there is at1 ≥ T such that

p(t1)u
∆(t1) < 0. Then

p(t)u∆(t) ≤ p(t1)u
∆(t1), t ∈ [t1,∞)T,
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and therefore

u∆(t) ≤ p(t1)u
∆(t1)

p(t)
, t ∈ [t1,∞)T.

Integrating, we obtain

u(t)− u(t1) ≤
∫ t

t1

u∆(s)∆s ≤ p(t1)u
∆(t1)

∫ t

t1

∆s

p(s)
→ −∞

as t → ∞, which impliesu(t) is eventually negative. This contradiction proves the
claim. Hence, we conclude that for allt ≥ T

u(t) > 0, u(τ(t)) > 0, u∆(t) > 0,
(
p(t)u∆(t)

)∆
< 0.

From Lemma 1.1, we have

u(τ(t)) ≥ η(t, T )uσ(t) and u(ξ(t)) ≤ ν(t, T )uσ(t)

for ξ(t) ≥ σ(t) ≥ t ≥ τ(t) ≥ T . By the monotonicity assumption onf we have

0 = [p(t)u∆(t)]∆ + f
(
t, uσ(t), uτ (t), uξ(t)

)
(2.2)

≥ [p(t)u∆(t)]∆ + f (t, uσ(t), η(t, T )uσ(t), ν(t, T )uσ(t))

for t ≥ T . Now, if we set

F (t, uσ(t)) := f (t, uσ(t), η(t, T )uσ(t), ν(t, T )uσ(t)) ,

then (2.2) shows thatβ(t) := u(t) is an upper solution for the dynamic equation
[p(t)u∆]∆ + F (t, uσ(t)) = 0. Also, the constant functionα(t) := u(T ) satisfies
[p(t)α∆(t)]∆ +F (t, ασ(t)) ≥ 0, and soα(t) is a lower solution. Therefore, by Theorem
1.5, the BVP

[p(t)y∆]∆ + F (t, yσ(t)) = 0, y(T ) = u(T )

has a solutiony with
u(T ) ≤ y(t) ≤ u(t), t ≥ T.

It follows that lim
t→∞

p(t)y∆(t) := L exists and is finite. IfL < 0 or if L = −∞, p(t)y(t)

would be eventually negative. HenceL ≥ 0. Integration forT < s < T̃ implies

p(T̃ )y∆(T̃ )− p(s)y∆(s) +

∫ T̃

s

F (r, yσ(r))∆r = 0.

Letting T̃ →∞ we obtain

p(s)y∆(s) = L +

∫ ∞

s

F (r, yσ(r))∆r ≥
∫ ∞

s

F (r, yσ(r))∆r.
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It follows that

y∆(s) ≥ 1

p(s)

∫ ∞

s

F (r, yσ(r))∆r.

Integrating again forT < t̃ < t, we obtain

y(t)− y(t̃) =

∫ t

t̃

y∆(s)∆s ≥
∫ t

t̃

1

p(s)

∫ ∞

s

F (r, yσ(r))∆r∆s.

If we let

I1(t) :=

∫ t

t̃

1

p(s)

∫ ∞

s

F (r, yσ(r))∆r∆s

and

I2(t) :=

∫ t

t̃

P (r, t̃)F (r, yσ(r))∆r +

∫ ∞

t

P (t, t̃)F (r, yσ(r))∆r,

then we have thatI1(t) ≥ I2(t). Indeed, since

I∆
1 (t) =

1

p(t)

∫ ∞

t

F (r, yσ(r))∆r

and

I∆
2 (t) = P (t, t̃)F (t, yσ(t)) +

1

p(t)

∫ ∞

σ(t)

F (r, yσ(r))∆r + P (t, t̃)(−F (t, yσ(t)),

we have

[I1(t)− I2(t)]
∆ =

1

p(t)

∫ σ(t)

t

F (r, yσ(r))∆r ≥ 0.

So I1(t) − I2(t) is increasing. Furthermore, sinceI1(t̃) = I2(t̃) = 0, the inequality
follows. Consequently, fort ≥ t̃ > T , we have

y(t)− y(t̃) =

∫ t

t̃

y∆(s)∆s

≥
∫ t

t̃

1

p(s)

∫ ∞

s

F (r, yσ(r))∆r∆s

≥
∫ t

t̃

P (r, t̃)F (r, yσ(r))∆r +

∫ ∞

t

P (t, t̃)F (r, yσ(r))∆r (2.3)

≥
∫ t

t̃

P (r, t̃)F (r, yσ(r))∆r.

From (2.3) we have

y(t) ≥ y(t̃) +

∫ t

t̃

P (r, t̃)F (r, yσ(r))∆r >

∫ t

t̃

P (r, t̃)F (r, yσ(r))∆r.
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Sincey(t) ≤ u(t) ≤ M for someM > 0 and
∫ t

t̃

P (r, t̃)F (r, yσ(r))∆r is an increasing

function oft, it follows that∫ ∞

t̃

P (r, t̃)F (r, yσ(r))∆r < ∞.

By the monotonicity off , we have∫ ∞
P (r, T )f (r, y(T ), η(r, T )y(T ), ν(r, T )M) ∆r < ∞.

By lettingα = y(T ), we obtain a contradiction to (2.1). This completes the proof.

The next result shows that a converse of Theorem 2.1 is true under an additional
assumption.

Theorem 2.2.Assumef satisfies conditions(A) and (C) and that

lim inf
t→∞

η(t, a) := k > 0 and lim sup
t→∞

ν(t, a) := K < ∞, (2.4)

where η(t, a), ν(t, a) are defined in(1.4). Also, assume thatP (σ(t), a)/P (t, a) is
bounded and letM > 0. Then, ify is any nonoscillatory solution of

(p(t)y∆)∆ + f
(
t, yσ(t), yτ (t), yξ(t)

)
= 0 (1.3)

with |y(t)| ≤ M , it follows that∣∣∣∣∫ ∞
P (σ(t), a)f

(
t, α, αk̃, MK̃

)
∆t

∣∣∣∣ < ∞

wherek̃ < k andK̃ > K.

Proof. Note that for anyβ∣∣∣∣∫ ∞
P (σ(t), a)f(t, β, . . . , β)∆t

∣∣∣∣ < ∞

if, and only if, ∣∣∣∣∫ ∞
P (t, a)f(t, β, . . . , β)∆t

∣∣∣∣ < ∞

sinceP (σ(t), a)/P (t, a) is bounded onT.
Suppose (2.4) holds. Then for anyε > 0 with ε < k, there exists̃t ≥ t0 such that

η(t, a) > k−ε =: k̃ providedt ≥ t̃ and there exists̃T ≥ t0 such thatν(t, a) ≤ K +ε =:
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K̃ providedt ≥ T̃ . Now assume (1.3) has a bounded nonoscillatory solution. Then by
Theorem 2.1 ∣∣∣∣∫ ∞

P (t, a)f (t, α, αη(t, a), Mν(t, a)) ∆t

∣∣∣∣ < ∞

for all α 6= 0. By the monotonicity assumption off , we have∫ ∞
P (t, a)f

(
t, α, αk̃,MK̃

)
∆t < ∞

which proves the result.

The previous result says that condition (2.4) is sufficient in order to replace the
auxiliary functionsη(t, a), ν(t, a) given by (1.4) with upper bounds. Our next result
gives a sufficient condition for

(p(t)y∆)∆ + f
(
t, yσ(t), yτ (t), yξ(t)

)
= 0 (1.3)

to have bounded nonoscillatory solutions.

Theorem 2.3.Assumef satisfies conditions(A) and (C). If∣∣∣∣∫ ∞
P (σ(t), a)f

(
t, α, α,

α

2

)
∆t

∣∣∣∣ < ∞, (2.5)

for all α 6= 0 and
1

p(t)

∫ ∞

t

f
(
s, α, α,

α

2

)
∆s ≤ M

for someM > 0 and all t ≥ a, then(1.3)has a bounded nonoscillatory solution.

Proof. If (2.5) holds, assume to be specific thatα > 0 and let0 < β < α. Choose
T ≥ t1 ∈ T such thatτ(t) ≥ t1 for t ≥ T and such that∫ ∞

T

P (σ(t), a)f

(
t, β, β,

β

2
,

)
∆t <

β

2
.

Definey0(t) ≡ β for t ≥ t0 and

yn+1(t) =


β −

∫ ∞

T

(P (σ(s), a)− P (T, a))f
(
s, yσ

n(s), yτ
n(s), yξ

n(s)
)
∆s, t < T,

β −
∫ ∞

t

(P (σ(s), a)− P (t, a))f
(
s, yσ

n(s), yτ
n(s), yξ

n(s)
)
∆s, t ≥ T.

Observet1 ≤ τ(t) ≤ t ≤ σ(t) ≤ ξ(t) for all t ≥ T . We claim that

β

2
≤ yn(t) ≤ β t ≥ T and alln ≥ 0. (2.6)
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By construction the claim holds fory0(t). Notice that whent < T , we haveτ(t) < T
and soyn(τ(t)) < β asy∆(t) ≡ 0 for all t ∈ T less thanT . Assume the inequality
holds forym(t), 1 ≤ m ≤ n. Then fort ≥ T

ym+1(t) = β −
∫ ∞

t

[P (σ(s), a)− P (t, a)] f
(
s, yσ

m(s), yτ
m(s), yξ

m(s)
)
∆s

≥ β −
∫ ∞

t

P (σ(s), a)f
(
s, yσ

m(s), yτ
m(s), yξ

m(s)
)
∆s

≥ β −
∫ ∞

t

P (σ(s), a)f

(
s, β, β,

β

2

)
∆s

>
β

2
.

Furthermore, sinces ≥ T , we haveyσ
m(s), yτ

m(s), yξ
m(s) are all positive. Hence by

condition (A)

[P (σ(s), a)− P (t, a)] f
(
s, yσ

m(s), yτ
m(s), yξ

m(s)
)
≥ 0

for s ≥ t ≥ T . Consequently,ym+1(t) ≤ β for t ≥ T . Therefore, by induction, (2.6)
holds. It remains to show that the set{yn(t)}∞n=0 is equicontinuous. To do this, we show
that

{
y∆

n (t)
}∞

n=0
is uniformly bounded. It follows that

∣∣y∆
n+1(t)

∣∣ =

∣∣∣∣0− [ ∫ ∞

t

−P∆(t, a)f
(
s, yσ

n(s), yτ
n(s), yξ

n(s)
)
∆s

− [P (σ(t), a)− P (σ(t), a)] f
(
t, yσ

n(t), yτ
n(t), yξ

n(t)
) ]∣∣∣∣

=

∣∣∣∣∫ ∞

t

P∆(t, a)f
(
s, yσ

n(s), yτ
n(s), yξ

n(s)
)
∆s

∣∣∣∣
=

∣∣∣∣∣
∫ ∞

t

(∫ t

a

1

p(s)
∆s

)∆t

f
(
s, yσ

n(s), yτ
n(s), yξ

n(s)
)
∆s

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞

t

(∫ t

a

(
1

p(s)

)∆t

∆s +
1

p(t)

)
f
(
s, yσ

n(s), yτ
n(s), yξ

n(s)
)
∆s

∣∣∣∣∣
=

∣∣∣∣ 1

p(t)

∫ ∞

t

f
(
s, yσ

n(s), yτ
n(s), yξ

n(s)
)
∆s

∣∣∣∣
≤
∣∣∣∣ 1

p(t)

∫ ∞

t

f

(
s, β, β,

β

2

)
∆s

∣∣∣∣
≤
∣∣∣∣ 1

p(t)

∫ ∞

t

f
(
s, α, α,

α

2

)
∆s

∣∣∣∣
≤ M.
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Therefore, the Ascoli–Arzela theorem along with a standard diagonalization argument
yields a subsequence of{yn(t)}∞n=0 which converges uniformly on compact subintervals
of [T,∞)T to a solutiony(t) of (1.3) satisfyingβ/2 ≤ y(t) < β, t ≥ T . This proves the
theorem.

To extend Theorems 2.1 and 2.2 to unbounded solutions, we introduce the classΦ of
functionsφ such thatφ(u) denotes a continuous nondecreasing function ofu satisfying
uφ(u) > 0, u 6= 0 with ∫ ±∞

±1

du

φ(u)
< ∞.

We will say thatf(t, u, v, w) satisfies condition (H) provided for someφ ∈ Φ there
existsc 6= 0 such that for allt ≥ T

inf
|u|≥c

f(t, u, η(t, T )u, ν(t, T )u)

φ(u)
≥ k |f (t, c, η(t, T )c, ν(t, T )c)|

for some positive constantk. We may now prove the following result.

Theorem 2.4. Supposeφ ∈ Φ. Assumef satisfies conditions(A), (C), and (H). Then
all solutions of

(p(t)y∆)∆ + f
(
t, yσ(t), yτ (t), yξ(t)

)
= 0 (1.3)

are oscillatory in case∣∣∣∣∫ ∞
kP (t, a)f (t, α, η(t, T )α, ν(t, T )α) ∆t

∣∣∣∣ = ∞ (2.7)

holds for all α 6= 0 and for some sufficiently largea ∈ T, wherek is the constant
appearing in condition(H).

Proof. Assume (2.7) holds for allα 6= 0 and letu be a nonoscillatory solution of (1.3)
with

u(t) > 0, u(τ(t)) > 0, t ≥ T.

As in the proof of Theorem 2.1, the BVP

[p(t)y∆]∆ + F (t, yσ(t)) = 0, y(T ) = u(T )

has a solutiony with
u(T ) ≤ y(t) ≤ u(t), t ≥ T,

whereF (t, u) = f(t, u, η(t, T )u, ν(t, T )u). Also, as in the proof of Theorem 2.1, for
t > t̃ > T , we have ∫ t

t̃

y∆(s)∆s >

∫ t

t̃

P (r, t̃)F (r, yσ(r))∆r. (2.8)
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We next define the continuously differentiable real-valued function

G(u) :=

∫ u

u0

ds

φ(s)
,

whereu0 := y(T ) > 0. Observe thatG′(u) = 1/φ(u). By the P̈otzsche chain rule [6,
Theorem 1.90],

(G ◦ y)∆(t) =

(∫ 1

0

dh

φ(yh(t))

)
y∆(t) ≥

(∫ 1

0

dh

φ(yσ(t))

)
y∆(t) =

y∆(t)

φ(yσ(t))
,

whereyh(t) := y(t) + hµ(t)y∆(t) ≤ yσ(t). Consequently,

(G ◦ y)∆(t) ≥ y∆(t)

φ(yσ(t))
.

Now multiplying (2.8) by(φ(yσ(s̃)))−1, we obtain∫ t

t̃

y∆(s)

φ(yσ(s))
∆s ≥ 1

φ(yσ(s))

∫ t

t̃

P (r, t̃)F (r, yσ(r))∆r

≥
∫ t

t̃

P (r, t̃)
F (r, yσ(r))

φ(yσ(r))
∆r

≥
∫ t

t̃

kP (r, t̃)F (r, c)∆r

for sufficiently larget̃ (by condition (H)) wherec := u(T ) > 0. Furthermore, since
p(t)y∆(t) > 0, we havey∆(t) > 0. It follows that lim

t→∞
y(t) = L2 with 0 < L2 < ∞

and so

lim
t→∞

G(y(t)) = lim
t→∞

∫ y(t)

u0

du

φ(u)
=

∫ L2

u0

du

φ(u)
=: L < ∞.

Therefore ast →∞ we have∫ ∞

T

(G ◦ y)∆(s) = lim
t→∞

[G(y(t))−G(y(T ))] < ∞.

It follows that∫ t

t̃

(G ◦ y)∆(s)∆s ≥
∫ t

t̃

y∆(s)

φ(yσ(s))
∆s ≥

∫ t

t̃

kP (r, t̃)F (r, c)∆r.

However the left side of the above is bounded ast → ∞ whereas the right side is
unbounded by assumption (2.7). This contradiction shows that all solutions of (1.3) are
oscillatory.
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3 Examples

We would like to illustrate some of the results above by means of examples. In the first
example we need Lemma 1.1.

Example 3.1.Consider the linear functional dynamic equation

(p(t)y∆)∆ + q(t)yσ(t) + r(t)yτ (t) + s(t)yξ(t) = 0, (3.1)

wherep∆(t) ≥ 0 on [t0,∞)T andp(t), q(t), r(t), s(t) > 0, t ≥ t0. If we set

Q(t) := q(t) + r(t)η(t, T ) + s(t)

for t ≥ T ≥ t0, then (3.1) is oscillatory in case

(p(t)y∆)∆ + λQ(t)yσ = 0 (3.2)

is oscillatory for some0 < λ < 1. To see this, suppose thatu is a nonoscillatory solution
of (3.1) withu(t) > 0, u(τ(t)) > 0, t ≥ T . Then, as in the work of Theorem 2.1, we
have for allt ≥ T

u(t) > 0, u(τ(t)) > 0, u∆(t) > 0, [p(t)u∆(t)]∆ < 0.

Then, by Lemma 1.1(
p(t)u∆

)∆
+ (q(t) + r(t)η(t, T ) + s(t)) uσ(t) ≤ 0, t ≥ T. (3.3)

Then withz(t) :=
p(t)u∆(t)

u(t)
, using (3.3) we see thatz(t) satisfies the Riccati dynamic

inequality (1.8) withq(t) = Q(t). By Lemma 1.2, this means that the equation(
p(t)y∆(t)

)∆
+ Q(t)yσ(t) = 0

is nonoscillatory and so by the Sturm–Picone comparison theorem [16, Lemma 6], (3.2)
is also nonoscillatory. This contradiction shows that (3.1) is oscillatory. If we apply a
specific oscillation criterion and letp(t) = 1, we conclude that (3.1) is oscillatory if

lim inf t

∫ ∞

t

(q(u) + r(u)η(t, T ) + s(u)) ∆u >
1

4

(see [15, Example 3.4]).

Example 3.2.Let f(t, u, v, w) := q(t)uγ1 + r(t)vγ2, whereγ1, γ2 > 0 are the quotients
of odd positive integers. We assume also thatq(t), r(t) > 0 for all larget and are rd-
continuous. It is not difficult to show that both conditions (A) and (C) hold. By Theorem
2.1 all bounded solutions of

(p(t)y∆)∆ + q(t)(uσ(t))γ1 + r(t)(vτ (t))γ2 = 0 (3.4)
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are oscillatory if∫ ∞
kP (t, a) [(q(t)α)γ1 + r(t)(αkη(t, a))γ2 ] ∆t = ∞ (3.5)

for all α 6= 0 and for somek ∈ (0, 1). Now supposeγ1, γ2 > 1 and letφ(u) := uγ,
where1 < γ < min{γ1, γ2}. It is not difficult to show thatf(t, u, v) = p(t)uγ1 +q(t)vγ2

satisfies condition (H) withk ≤ |c|−γ. Therefore, from Theorem 2.4, we conclude that
all solutions of (3.4) are oscillatory provided (3.5) holds.

As an illustration of the situation whenf involves an advanced argument, we con-
sider the following example.

Example 3.3.Suppose that

f(t, u, v, w) :=
q(t)uγ1 + r(t)vγ2

1 + s(t)w2
,

wheres(t) ≥ 0 is rd-continuous andγ1, γ2, q(t), r(t) > 0. From Theorem 2.1, we
conclude that all bounded solutions of

(py∆)∆ +
q(t)(yσ(t))γ1 + r(t)(yτ (t))γ2

1 + s(t)(yξ(t))2
= 0 (3.6)

are oscillatory in case∫ ∞
P (t, a)

(
q(t)αγ1 + r(t)(η(t, a)α)γ2

1 + s(t)(ν(t, a)M)2

)
∆t = ∞

for all α 6= 0, whereM > 0 is the upper bound of the oscillatory solutions of (3.6).

The results in the last two examples may be regarded as extensions of some oscilla-
tion criteria due to Atkinson [5].
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