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Abstract In this paper we will be concerned with calculating the “Taylor
monomials” that appear in the Taylor’s formula for a function defined on
a time scale. These Taylor monomials are very important for such Taylor
series and are intimately related to Cauchy functions for certain dynamic
equations. These Cauchy functions arise in variation of constants formulas
and are also important when considering certain Green’s functions. We will
calculate several of these “Taylor monomials” for different time scales. In
the last section we will give a short proof of Taylor’s Theorem and give an
interesting example.
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1 Introduction

The theory of time scales was introduced by Stefan Hilger in his 1988 PhD
thesis [5] (supervised by Bernd Aulbach) in order to unify continuous and
discrete analysis. The study of dynamical equations on time scales reveals
discrepancies between continuous and discrete analysis, and often helps avoid
proving results twice, once for differential equations and once for difference
equations. The general idea is to prove a result for a dynamic equation where
the domain of the unknown function is a so-called time scale, which is an
arbitrary closed subset of the reals. If we choose the time scale to be the set
of the real numbers, the general result yields a result concerning an ordinary
differential equation. If, on the other hand, we choose the time scale to be
the set of integers, the general result yields a result for difference equations.
However, since there are many other time scales than just the set of real num-
bers or the set of integers, one has a more general result. Dynamic equations
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on time scales have a tremendous potential for applications. For example, it
can model insect populations that are continuous while in season, die out in
winter while their eggs are incubating or dormant, and then hatch in a new
season, giving rise to a nonoverlapping population. In Section 2 we will give
several preliminary definitions that we will need in this paper. In Section 3
we will defined “Taylor monomials” and give several formulas for these Taylor
monomials for various time scales. Finally in Section 4 we will give a short
proof of Taylor’s formula for a function on a time scale and give an interesting
example. Argawal and Bohner [1] give a long proof of this Taylor’s theorem
but they use only basic results.

2 Preliminaries

First, we introduce some definitions. These definitions can be found in M.
Bohner and A. Peterson [3] and R. P. Agarwal and M. Bohner [1].

Definition 1 A time scale T is a nonempty closed subset of the reals.

Definition 2 Let T be a time scale. We define the forward jump operator
σ : T → T by

σ(t) := inf{s ∈ T : s > t}, for t ∈ T,

while the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}, for t ∈ T.

Here we put inf ∅ = sup T and sup ∅ = inf T, where ∅ denotes the empty set.
For t ∈ T we say that t is left-scattered if ρ(t) < t, while if σ(t) > t, we say
t is right-scattered. A point t ∈ T is isolated if it is both right-scattered and
left-scattered at the same time. For t ∈ T we say t is right-dense if t < sup T

and σ(t) = t, while if t > inf T and ρ(t) = t, we say t is left-dense. The
graininess function µ : T → [0,∞) is defined by

µ(t) := σ(t) − t.

If sup T < ∞ and supT is left-scattered, we let T
κ := T\{sup T}. Otherwise,

we let T
κ := T.

Definition 3 Assume f : T → R is a function and let t ∈ T
κ. Then we

define f∆(t) to be the number (provided it exists) with the property that given
any ε > 0, there is a neighborhood U of t such that

|[f(σ(t)) − f(s)] − f∆(t)[σ(t) − s]| ≤ ε|σ(t) − s|
for all s ∈ U . We call f∆(t) the delta (or Hilger) derivative of f at t. If
T = R, f∆ = f ′, whereas if T = Z (the integers), then

f∆(t) = ∆f(t) := f(t + 1) − f(t),

that is, ∆ is the usual foward difference operator.
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Definition 4 A function f : T → R is called rd-continuous provided it is
continuous at right-dense points in T and its left-sided limits exist (finite) at
left-dense points in T.

If T = R, then f : R → R is rd-continuous if and only if f is continuous. At
the other extreme, if T = Z, then any function defined on Z is rd-continuous.
It is known [3] that if f is rd-continuous, then there is a function F, called an
antiderivative of f such that F ∆(t) = f(t). In this case, we define

∫ b

a

f(t)∆t = F (t)|ba.

If T = R, then
∫ b

a

f(t)∆t =

∫ b

a

f(t)dt,

where the integral on the right hand side is the Riemann integral. If every
point in T is isolated and a < b are in T, then we will use the formula (see
[3])

∫ b

a

f(t)∆t =

ρ(b)
∑

t=a

f(t)µ(t).

3 Taylor Monomials

In this section we first define what we will call the Taylor monomials or gener-
alize polynomials as defined originally by Agarwal and Bohner [1] and are also
in the book by Bohner and Peterson [3]. They are called Taylor monomials
because they are important, as we will see, in Taylor’s formula for a function
defined on a time scale. These Taylor monomials are also important because
they are intimately related to Cauchy functions for certain dynamic equations
which are important in variation of constants formulas. Since Green’s func-
tions are often given in terms of Cauchy functions, these Taylor monomials
are important in the study of certain boundary value problems. The Taylor
monomials hk : T × T → R, k ∈ N0, are defined recursively as follows: The
function h0 is defined by

h0(t, s) = 1, for all s, t ∈ T,

and, given hk for k ∈ N0, the function hk+1 is defined by

hk+1(t, s) =

∫ t

s

hk (τ, s) ∆τ, for all s, t ∈ T.

If we let h∆
k (t, s) denote for each fixed s ∈ T the derivatives of hk(t, s) with

respect to t, then

h∆
k (t, s) = hk−1(t, s), for k ∈ N, t∈Tκ.
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The above definition obviously implies

h1(t, s) = t − s, for all s, t ∈ T.

However, in general, finding hk for k ≥ 2 is very difficult. In this section we
will give formulas for several of these important Taylor monomials for various
time scales. In many of the applications it suffices to find formulas for hk(t, s)
for just t ≥ s. The first three examples that we give below are the formulas
that are known in the literature and the other examples are new as far as we
know.

Example 5 If T = R, then

hk(t, s) =
(t − s)

k

k!
, for t, s ∈ T, k ∈ N0.

Example 6 Consider the time scale T = Z. The factorial function (see
Kelley and Peterson [6]) tk (read as t to the k falling), for k ∈ N0 is defined
by t0 = 1 and for k ∈ N,

tk = t(t − 1)(t − 2) · · · (t − k + 1).

In this case

hk(t, s) =
(t − s)

k

k!
, for t, s ∈ T, t ≥ s, k ∈ N0.

Example 7 (Agarwal and Bohner[1]) Consider the time scale

T = qZ, for some q > 1.

This time scale is very important (see, e.g., Bézivin [2], G. Derfel, E. Roma-
nenko, and A. Sharkovsky [4],Trijtzinsky [7], and Zhang [8]). In this case for
k ∈ N0,

hk (t, s) =
k−1
∏

m=0

t − qms
∑m

j=0 qj
, for all s, t ∈ T. (1)

Example 8 Consider the time scale with step size h > 0,

T =hZ = {0,±h,±2h,±3h, ...}.

We claim that for k ∈ N0,

hk (t, s) =

∏k−1
i=0 (t − ih− s)

k!
, for all s, t ∈ T, t ≥ s (2)

Evidently, for k = 0, the claim (2) holds (by convention
∏

−1
i=0 = 1). Now we

assume (2) holds with k replaced by some m ∈ N0. Then



Cauchy Functions and Taylor’s Formula for Time Scales T 303

h∆
m+1 (t, s) =

hm+1 (σ(t), s) − hm+1 (t, s)

µ (t)

=

∏m

i=0 (t + h − ih − s) − ∏m

i=0 (t − ih − s)

(m + 1)!h

=

∏m−1
i=−1 (t − ih − s) − ∏m

i=0 (t − ih − s)

(m + 1)!h

=

∏m−1
i=0 (t − ih − s) [(t + h − s) − (t − mh − s)]

(m + 1)!h

=

∏m−1
i=0 (t − ih − s) [t + h − s − t + mh + s]

(m + 1)!h

=

∏m−1
i=0 (t − ih − s) h [1 + m]

(m + 1)!h
=

∏m−1
i=0 (t − ih − s)

m!
= hm (t, s)

and since hm+1(s, s) = 0 we get that (2) follows with k replaced by m + 1.
Hence by the principle of mathematical induction, (2) holds for all k ∈ N0.

Example 9 Assume α0 ∈ R and αk > 0, k ∈ N. Let S := {t =
∑n

k=0 αk, n ∈
N0}. If

∑

∞

k=0 αk = ∞, let T be the time scale T = S, whereas if L =
∑

∞

k=0 αk

converges, let T = S ∪ {L}. We claim that for this time scale T,

h2(t, t0) =
n−1
∑

j=n0+1

j
∑

k=n0+1

αj+1αk, for t ≥ t0, (3)

where t =
∑n

k=0 αk and t0 =
∑n0

k=0 αk.
To see this let k2 be defined for t, t0 ∈ T, t ≥ t0 by the right hand side of
equation (3). Then by our convention on sums, k2(t0, t0) = 0 and for t ∈ T,
t 6= sup T,

k∆
2 (t, t0) =

k2(σ(t), t0) − k2(t, t0)

µ(t)

=

∑n

j=n0+1

∑j

k=n0+1 αj+1αk − ∑n−1
j=n0+1

∑j

k=n0+1 αj+1αk

αn+1

=

∑n

k=n0+1 αn+1αk

αn+1
=

n
∑

k=n0+1

αk = t − t0,

which implies the desired result.

Example 10 Consider the time scale

T = N
1
2

0 = {√n : n ∈ N0}.
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Note that

σ (t) =
√

n + 1, µ (t) =
√

n + 1 −√
n,

where t =
√

n, n ∈ N0. For this time scale we will just find h2 (t, 0) .

Consider

h2 (t, 0) =

∫ τ

0

1∆τ

= 0µ (0) +
√

1µ
(√

1
)

+ · · · + µ
√

n − 1
(√

n − 1
)

=
√

0
(√

1 −
√

0
)

+
√

1
(√

2 −
√

1
)

+ ... +
√

n − 1
(√

n −
√

n − 1
)

=

n−1
∑

k=0

√
k

(√
k + 1 −

√
k
)

=

n−1
∑

k=0

[(

√

k (k + 1)
)

− k1
]

= p(t) − k2

2

∣

∣

∣

∣

n

0

= p(t) − n (n − 1)

2
= p(t) − t2

(

t2 − 1
)

2
,

where p(t) =
∑

s∈[0,t) sσ(s).

Example 11 We consider the time scale

T = N
2
0 = {n2 : n ∈ N0}.

Note that

σ (t) = (n + 1)2 , µ(t) = 2n + 1,

where t = n2, n ∈ N0.

Consider

h2 (t, 0) =

∫ t

0

τ∆τ = 02µ
(

02
)

+ 12µ
(

12
)

+ · · · + (n − 1)
2
µ

(

(n − 1)
2
)

= 12 (2(1) + 1) + 22 (2(2) + 1) + · · · + (n − 1)
2
(2(n − 1) + 1)

=

n−1
∑

k=1

k2(2k + 1) =

n−1
∑

k=1

(

2k3 + k2
)

=

n−1
∑

k=1

(

2k3 + 7k2 + 3k1
)

=
k4

2
+

7k3

3
+

3k2

2

∣

∣

∣

∣

n

1

=
n4

2
+

7n3

3
+

3n2

2

=
n (n − 1) (n − 2) (n − 3)

2
+

7n (n − 1) (n − 2)

3
+

3n (n − 1)

2

=
n (n − 1)

(

3n2 − n − 1
)

6
=

√
t
(√

t − 1
) (

3t −
√

t − 1
)

6
.

Similarly,
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h3 (t, 0) =

∫ t

0

h2(τ, 0)∆τ =

n−1
∑

k=0

h2

(

k2, 0
)

µ
(

k2
)

=
n−1
∑

k=0

k (k − 1)
(

3k2 − k − 1
)

6
(2k + 1)

=
n−1
∑

k=0

(

k5 − 5k4

6
− 2k3

3
+

k2

3
+

k

6

)

=
n−1
∑

k=0

(

k5 +
55k4

6
+

58k3

3
+

15k2

2

)

=

(

k6

6
+

11k5

6
+

29k4

6
+

5k3

3

)∣

∣

∣

∣

n

0

=
n6

6
+

11n5

6
+

29n4

6
+

5n3

3

=
n (n − 1) (n − 2)

(

n3 − n2 − n − 5
)

6

=

√
t
(√

t − 1
) (√

t − 2
)

(

t
3
2 − t − t

1
2 − 5

)

6
.

Now we will examine h2(t, s)) for t ≥ s. Let m =
√

s.

h2(t, s)

=

n−1
∑

k=m

(

k2 − m2
)

(2k + 1)

=
n4

2
+

7n3

3
+

3n2

2
− m4

2
− 7m3

3
− 3m2

2
− m2

(

n2 + n
)

+ m2
(

m2 + m
)

=
(n − m)

2

3!
×

×
{

3(n − m − 2)2 + (12m + 14)(n− m − 2) + (12m2 + 24m + 9)
}

=

(√
t −√

s
)2

3!
×

×
{

3(
√

t −√
s − 2)2 + (12

√
s + 14)(

√
t −√

s − 2) + (12s + 24
√

s + 9)
}

4 Taylor’s Theorem

In Agarwal and Bohner [1] a elementary but lengthy proof of Taylor’s Theorem
for a function on a time scale is proved. In this section we will give a short
proof of this Taylor’s Theorem but it will depend on knowing more results.
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Theorem 12 (Taylor’s Formula). Assume f ∈ Cn+1
rd (T) and s ∈ T. Then

f(t) =

n
∑

k=0

f∆k

(s) hk (t, s) +

∫ t

s

hn (t, σ (τ)) f∆n+1

(τ) ∆τ. (4)

Proof. Let g be defined by

g(t) := f∆n+1

(t) .

Then f is the unique solution of the IVP

x∆n+1

= g (t) , x∆i

(s) = f∆i

(s) , 0 ≤ i ≤ n.

Let

u(t) :=

n
∑

k=0

f∆k

(s) hn (t, s)

and

v(t) :=

∫ t

s

hn(t, σ (τ))g (τ) ∆τ.

Then u solves the IVP

u∆n+1

= 0, u∆i

(s) = f∆i

(s) , 0 ≤ i ≤ n.

It suffices to show v solves the IVP

v∆n+1

= g (t) , v∆i

(s) = 0, 0 ≤ i ≤ n.

Clearly v(s) = 0. Also

v∆ (t) =

∫ t

s

h∆
n (t, σ (τ)) g(τ)∆τ + hn (σ (t) , σ (t)) g(t)

=

∫ t

s

h∆
n (t, σ (τ)) g(τ)∆τ.

Note v∆ (s) = 0 and

v∆2

(t) =

∫ t

s

h∆2

n (t, σ (τ)) g(τ)∆τ + hn (σ (t) , σ (t)) g(t)

=

∫ t

s

h∆2

n (t, σ (τ)) g(τ)∆τ.

Note v∆2

(s) = 0. Proceeding in this manner we obtain by mathematical
induction that

v∆i

(t) =

∫ t

s

h∆i

n (t, σ (τ)) g(τ)∆τ
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for 0 ≤ i ≤ n and v∆i

(s) = 0, 0 ≤ i ≤ n. Finally,

v∆n+1

(t) =

∫ t

s

h∆n+1

n (t, σ (τ)) g(τ)∆τ + hn (σ (t) , σ (t)) g(t)

= g (t) ,

and this proof is complete.
The following example was motivated by an example shown to the authors by
Douglas Anderson. This is an example of a function on the time scale T = Z,

where the Taylor series of a function about t = 0 converges to the function
for t ≥ 0 but diverges for t < 0.

Example 13 For T = Z, consider f(t) = e1(t, 0) = 2t for t ∈ Z. If we
expand f about 0, then Taylor’s formula (4) for f is given by

f(t) = 2t = Pn(t) + En(t),

where the Taylor polynomial Pn is given by

Pn(t) =
n

∑

k=0

tk

k!

and the error term En is given by

En(t) =











∑t−1
τ=1(t − τ − 1)n2τ if t > 0

0 if t = 0

−∑0
τ=t+1(t − τ − 1)n2τ if t < 0.

Then Pn(−1) = 1−(−1)n+1

2 and En(−1) = (−1)n+1

2 , so that the Taylor polyno-
mial will not converge to f at −1 as n → ∞. Note, however, that

f(t) = 2t =

∞
∑

k=0

tk

k!
= Pt(t) =

t
∑

k=0

(

t

k

)

for any nonnegative integer t. It is not difficult to show that the Taylor’s
series for f(t) = 2t with respect to the time scale T = Z diverges for any
integer t < 0.
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