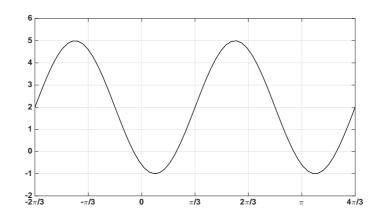
MATH 1321 - FINAL EXAMINATION FALL 2016

SHOW ALL YOUR WORK. EACH PROBLEM IS WORTH THE SAME NUMBER OF POINTS.

- 1. a. Find all acute angles θ such that $\theta + 15^{\circ}$ and $4\theta + 45^{\circ}$ are acute, and $\sin(\theta + 15^{\circ}) = \cos(4\theta + 45^{\circ})$.
 - b. Find the value of $\cos(-930^\circ)$.
- 2. The angle of elevation from a point on the ground 15.5 m from the base of a tree to the top of the tree is 60.4°. Find the height of the tree.
- 3. Madison(South Dakota) and Lubbock(Texas) are 1200 km apart and lie on the same north-south line. The latitude of Madison is 44° N. What is the latitude of Lubbock? (Assume that the radius of the Earth is 6400 km.)
- 4. Earth revolves on its axis once every 24 hr. Assuming that Earth's radius is 6400 km, find the following:
 - a. Angular speed of the Earth in radians per hour.
 - b. Linear speed at the North pole or South pole.
 - c. Linear speed when the latitude is 45° .

Give your answers for the linear speed in kilometers per hour.


5. Suppose that the average monthly low temperatures for a small town are given in the table.

Month (x)	1	2	3	4	5	6	7	8	9	10	11	12
Temperature (y)	19	27	38	45	57	62	65	58	51	41	33	25

A model of these data is given by:

$$y = f(x) = 23\sin\left(\frac{\pi}{6}x - \frac{2\pi}{3}\right) + 42$$

- a. What is the vertical displacement of y?
- b. What is the amplitude of y?
- c. What is the period of y?
- d. What is the horizontal displacement (phase shift) of y?
- 6. The function graphed is of the form of $y = a \sin[b(x-d)] + c$, where a, b, c, and d are constants.

Write down the equation of the function graphed.

- 7. Suppose that A and B are angles in standard position with $\sin A = \frac{4}{5}, \frac{\pi}{2} < A < \pi$, and $\cos B = -\frac{5}{13}, \pi < A < \frac{3\pi}{2}$. Find each of the following:
 - a. $\sin(A+B)$,
 - b. $\tan(A+B)$,
 - c. the quadrant in which A + B lies.
- 8. Use identities to find the **exact values** of the following, without using calculators:
 - a. $\cos 25^{\circ} \cos 125^{\circ} \sin 25^{\circ} \sin 125^{\circ}$, b. $\sin \frac{5\pi}{12}$,

c.
$$\tan \frac{\pi}{12}$$

9. Verify that

$$\frac{2\cos 2x}{\sin 2x} = \cot x - \tan x.$$

- 10. Find the exact value of y in each of the following without using a calculator
 - a. $y = \arcsin\left(\frac{\sqrt{3}}{2}\right)$ b. $y = \sin\left(\cos^{-1}\left(\frac{8}{17}\right)\right)$
- 11. Solve each equation for exact solutions of angles over the interval $[0, 2\pi]$
 - a. $2\sin^2 \alpha + 3\sin \alpha + 1 = 0$ b. $2\cos^2 \theta - 2\sin^2 \theta + 1 = 0$
- 12. Let $\mathbf{u} = \langle 6, -3 \rangle$ and $\mathbf{v} = \langle -14, 8 \rangle$. Find the following
 - a. $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$,
 - b. 5u + 2v,
 - c. $\mathbf{u} \cdot \mathbf{v}$.