1. The revenue from producing Weasley’s Wildfire Whiz-Bangs is given by

\[R(x) = \frac{8x^7 - 6x^5 + 9x^4 + 10}{6x^7 + 9x^6 - 3x^3 + x - 7} \]

where \(x \) is given in hundreds of units and the revenue is in hundreds of dollars. Find the revenue as the number of units increases, as \(x \to \infty \). Explain the meaning of this limit in a complete sentence. Round to the nearest cent.

2. Find \(k \) so that the cost function, \(C(x) \), is continuous on \((-\infty, \infty) \).

\[C(x) = \begin{cases}
\frac{x^2 - 3x - 10}{x - 5}, & \text{if } x < 5 \\
\frac{x - 5}{3x + k}, & \text{if } x \geq 5
\end{cases} \]

3. Find the marginal profit for each of the profit functions.
 a) \(P(x) = 5x^{-4} + 3\sqrt{x} \)
 b) \(P(x) = (x + 6x^{-2})e^{x^2} \)

4. Find the equation of the line tangent to \(f(x) = 2\ln(x + 6) \) at \((-5,0)\). Leave \(e \) and \(\ln \) in your answer. Do NOT use decimals in your answer.

5. A cost function is given by

\[C(x) = \frac{e^{x^2+4x}}{x + 4} \]

a) Find the average cost function, \(\bar{C}(x) = \frac{C(x)}{x} \).

b) Find the marginal average cost function.

6. Assume the demand function for a certain commodity has the form

\[p = x^4 - 7x^3 + 3x^2 - 7 \]

where \(x \) is the quantity demanded, measured in units of thousands and \(p \) is the unit price is dollars.

a) Find the revenue function, \(R(x) \).

b) Find the marginal revenue function.

c) Calculate \(R'(3) \).

7. The concentration (in milligrams/cubic centimeters) of a certain drug in a patient’s body \(t \) hr after infection is given by

\[C(t) = \frac{t^3}{3} - 6t^2 + 35t + 600 \]

When is the concentration of the drug increasing, and when is it decreasing?
8. A certain company wants to investigate the effects of advertisement on the revenue of their product. The following function is used to model the situation:

\[R(x) = \frac{3x^5}{4} - 10x^3 \]

where \(R \) is the monthly revenue in thousands of dollars, and \(x \) is the amount of advertising in thousands of dollars each month. Find the intervals where the revenue is concave up and concave down. State the inflection points.

9. A company has found the following information about their profit.

- Relative maximum is \((2, 25)\)
- Relative minimum is \((-2, -7)\)
- Increasing on \((-2, 2)\)
- Decreasing on \((-\infty, -2) \cup (2, \infty)\)
- Inflection Point is \((0, 9)\)
- Concave up on \((-\infty, 0)\)
- Concave down on \((0, \infty)\)

Graph the profit function.

10. For a certain company, the revenue in thousands of dollars when \(x \) in hundreds of units are sold is given by

\[R(x) = x^3 + 6x^2 - 32x + 200. \]

For the same company, the cost in thousands of dollars when \(x \) units are sold is given by

\[C(x) = 21x^2 - 104x + 55. \]

a) Find the profit equation.
b) How many items does the company need to sale to maximize the profit? What is the maximum profit?

Answer in complete sentences.

11. A rectangular box is to have a square base and a volume of 64 ft\(^3\). If the material for the base cost $3 per square foot, the material for the sides costs $2 per square foot, and the material for the top costs $1 per square foot, determine the dimensions of the box that can be constructed at minimum cost. What is the minimum cost?

Answer in complete sentences.

12. Integrate the following:

a) \[
\int \left(x^4 - x^{-7} + \sqrt{x} - 1 \right) \, dx
\]

b) \[
\int \left(7x^6 - 12x^3 + 5 \right) \left(x^7 - 3x^4 + 5x \right)^3 \, dx
\]

c) \[
\int_{0}^{2} \frac{-8x - 12}{(x^2 + 3x - 6)^4} \, dx
\]

13. The marginal revenue for a certain company is given by

\[R'(x) = 3x^4 + 3x^2 - x - 7 \]

Find the revenue function, keeping in mind that \(R(0) = 0 \). Find the demand function. *Clearly label both formulas.*
14. The marginal cost function for a certain company is given by
\[C'(x) = \frac{4x^3 - 6x}{x^4 - 3x^2 + 5} \]
Find the cost function where the fixed cost is 50 \(\ln 5 \); that is, \(C(0) = 50 \ln 5 \).

15. Find the area between \(f(x) = 3x^3 \) and \(g(x) = 3x \). Make sure to graph the region. Make sure to include units in your answer.

16. A supplier of portable hair dryers will make \(x \) hundred units of hair dryers available in the market when the unit price is
\[p = \sqrt{8 + 4x} = S(x) \]
dollars. Determine the producers’ surplus if the market price is set at $6/unit. Answer in a complete sentence.

17. Camille purchased a 21-year franchise for a computer outlet store that is expected to generate income at the rate of
\[R(t) = 350,000 \] dollars/year. If the prevailing interest rate is 6%/year compounded continuously, find the present value of the franchise. Round to the nearest cent.

18. The revenue in thousands of dollars for a company that makes two different products is given by
\[R(x, y) = x^2 - y^2 + 6x + 7y - 8 \]
Find \(R(12, 6) \). Answer in a complete sentence.

19. The monthly profit (in dollars) of Bond and Barker Department Store depends on the level of inventory \(x \) (in thousands of dollars) and the floor space \(y \) (in thousands of square feet) available for display of the merchandise, as given by the equation.
\[P(x, y) = -5x^2 - 7y^2 + xy + 25x + 30y - 30,000 \]
Compute \(\frac{\partial P}{\partial x} \) and \(\frac{\partial P}{\partial y} \).

Formulas for Math 1331

\[
L = 2 \int_0^1 [x - f(x)] \, dx \quad \quad CS = \int_0^x D(x) \, dx - \bar{p} \cdot \bar{x} \quad \quad PS = \bar{p} \cdot \bar{x} - \int_0^x S(x) \, dx
\]
\[A = e^{rT} \int_0^T R(t)e^{-rt} \, dt \quad \quad PV = \int_0^T R(t)e^{-rt} \, dt \quad \quad A = \frac{mP}{r} (e^{rT} - 1) \]
\[PV = \frac{mP}{r} (1 - e^{-rT}) \]