Final Exam Math 1451 Fall 2016

You may not use any printed/written material or electronic devices (including calculators and cell phones). For the Multiple Choice Problems, please choose only one answer. For the show-work answers, please use the space provided in the exam.

Note that the exam is double-sided. All your work must be included and submitted on this printout; no additional paper is collected. Please abide by the academic integrity rules: cheating, copying from another student, receiving or giving help on the exam will result in a score of 0 on the final - and will be reported to administrative offices, which will take appropriate action in the matter.

Copyright 2016 - Department of Mathematics and Statistics, Texas Tech University. Unauthorized reproduction prohibited.

Multiple Choice Part

Part D: Differentiation.
Evaluate the derivative of each of the following functions at the value $x = 0$, and choose the correct answer from the a)-d) group provided:

D1) $f(x) = x^3 + 2x^2 + 5x - 9$
Answer: a). 0; b). 5; c). -9; d). none of the above

D2) $f(x) = \arctan(7x) + x + 7$
Answer: a). 0; b). 7; c). 8; d). none of the above

D3) $f(x) = \cos x + \sin x$
Answer: a). 0; b). -1; c). 1; d). none of the above

D4) $f(x) = xe^{2x^2}$
Answer: a). 0; b). -1; c). 1; d). none of the above

D5) $f(x) = \frac{x}{2x^2 + 1} + x^{3/2} + x + 1$
Answer: a). 0; b). 1; c). 2; d). none of the above

D6) $f(x) = \arcsin(3x) + \pi/4$
Answer: a). 0; b). 1; c). 3; d). none of the above

D7) $f(x) = e \cdot \ln(\ln(x + e))$
Answer: a). 0; b). 1; c). e; d). none of the above

D8) $f(x) = \ln(e^{x^2+1}) + \pi/4$
Answer: a). 0; b). 1; c). 2; d). none of the above

D9) $f(x) = \tan x + x + 1$
Answer: a). 0; b). 1; c). 2; d). none of the above

D10) $f(x) = 2 \cos x \sin x$
Answer: a). 0; b). 1; c). 2; d). none of the above
Part I: Integration.
Evaluate the following definite integrals, and choose the correct answer from the a)-d) group provided:

I1) \[\int_1^4 \frac{1}{2\sqrt{x}} \, dx \]
Answer: a). 0; b). 1; c). 2; d). none of the above

I2) \[\int_0^1 3x^2 \, dx \]
Answer: a). 0; b). 1; c). 2; d). none of the above

I3) \[\int_1^e \frac{x^2 + 1}{x} \, dx \]
Answer: a). 0; b). 1; c). 2; d). none of the above

I4) \[\int_0^\pi \cos x + \sin x \, dx \]
Answer: a). 0; b). 1; c). 2; d). none of the above

I5) \[\int_0^1 \frac{1}{1 + x^2} \, dx \]
Answer: a). 0; b). \(\pi \); c). \(\pi/4 \); d). none of the above

I6) \[\int_0^1 \frac{4x}{1 + x^2} \, dx \]
Answer: a). 0; b). 2 \ln 2; c). 1; d). none of the above

I7) \[\int_{\pi/6}^{\pi/2} \cot x \, dx \]
Answer: a). 0; b). \ln 2; c). \(-\ln 2\); d). none of the above

I8) \[\int_0^1 2x \cdot e^{x^2} \, dx \]
Answer: a). 0; b). \(e \); c). \(e - 1 \); d). none of the above

I9) \[\int_e^{e^2} \frac{1}{x \ln(x)} \, dx \]
Answer: a). 1; b). 2; c). \ln 2; d). none of the above

I10) \[\int_0^\pi \sin x \cos x \, dx \]
Answer: a). 0; b). 1; c). 2; d). none of the above

Show Work Problems

I). A farmer has 400 feet of fencing to build a rectangular pen out on a field. Find the dimensions of the fenced plot that maximize the area. Justify your work using differential calculus, in order to receive proper credit, in the space provided:

II). Let \(f(x) = xe^x \) where \(x \) is a real number. Its 1st and 2nd derivatives are: \(f'(x) = \ldots \); \(f''(x) = \ldots \).
 (i) Draw a chart for the function \(f \), indicating the values \(x \) corresponding to critical points and inflection points, respectively.
 (ii) Using the chart, indicate the intervals where the function \(f \) is increasing, decreasing, concave down and concave up, respectively.
 (iii) Sketch the graph of the function \(f \).
III). Evaluate the following limits, if they exist. Box your final answers.

(i) \(\lim_{x \to 0} \frac{\sqrt{x + 4} - 2}{x} = \)

(ii) \(\lim_{x \to 0} (1 - x)^{\frac{3}{2}} = \)

Use this space and the back to work the Multiple Choice Problems, if and where needed