Mathematics 2450, Calculus 3 with applications

Fall 2015, version A

The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the parametric equations for the line passing through the point \(P = (1, 2, 3) \) and perpendicular to the plane \(3x - 2y + 5z = 4 \).

 a) \(t\mathbf{i} + 2t\mathbf{j} + 3t\mathbf{k} \)
 b) \((3 + t, -2 + 2t, 5 + 3t) \)
 c) \(\frac{x - 3}{1} = \frac{y + 2}{2} = \frac{z - 5}{3} \)
 d) \(x + 2y + 3z = 14 \)
 e) \((1 + 3t, 2 - 2t, 3 + 5t) \)

2. Let the velocity vector be \(\mathbf{v}(t) = t^2 \mathbf{i} + \cos t \mathbf{j} + e^{2t} \mathbf{k} \). Compute the acceleration vector \(\mathbf{a}(t) \).

 a) \(\left(\frac{t^3}{3} + c_1 \right) \mathbf{i} + (\sin t + c_2) \mathbf{j} + \left(\frac{1}{2} e^{2t} + c_3 \right) \mathbf{k} \)
 b) \(2t \mathbf{i} - \sin t \mathbf{j} + 2e^{2t} \mathbf{k} \)
 c) \(\frac{t^3}{3} \mathbf{i} + \sin t \mathbf{j} + \frac{1}{2} e^{2t} \mathbf{k} \)
 d) \(2t - \sin t + 2e^{2t} \)
 e) \((2t + c_1) \mathbf{i} + (-\sin t + c_2) \mathbf{j} + (2e^{2t} + c_3) \mathbf{k} \)

3. Find the value of the following limit

 \[A = \lim_{(x,y) \to (0,0)} \frac{x^2y}{x^4 + y^2}, \]

 if it exists.

 a) The limit does not exist
 b) \(A = \frac{1}{2} \)
 c) \(A = +\infty \)
 d) \(A = \frac{0}{0} \)
 e) \(A = 0 \)
4. Given $F(x, y) = \cos(xy)$ where $x = u^2 + v^2$ and $y = u^2 - v^2$. Use the chain rule (do not substitute for x and y!) to find $\frac{\partial F}{\partial v}$. Express the result in terms of x, y, u, and v.

 a) $\frac{\partial F}{\partial v} = -\sin(xy)(y - x)2v$
 b) $\frac{\partial F}{\partial v} = -\sin(xy)(y + x)2u$
 c) The function is not differentiable
 d) $\frac{\partial F}{\partial v} = -\sin(xy)(2yu - 2xv)$
 e) $\frac{\partial F}{\partial v} = -\sin(xy)(2yv + 2xu)$

5. Let $f(x, y) = \cos(x + 3y)$, $P = \left(\frac{\pi}{2}, \frac{\pi}{3}\right)$ and $\mathbf{v} = -3\mathbf{i} + 4\mathbf{j}$. Find the directional derivative of f at P in the direction of \mathbf{v}.

 a) 9
 b) 0
 c) $\frac{9}{5}$
 d) $\frac{1}{5}(-3, 4)$
 e) $\langle 1, 3 \rangle$

6. Evaluate the integral by reversing the order of integration.

 $I = \int_0^1 \int_y^1 e^{x^2} \, dx \, dy$

 a) $I = 1$
 b) $I = e$
 c) $I = (e - 1)$
 d) $I = 0$
 e) $I = \frac{1}{2}(e - 1)$

7. Find the surface area of the portion of the cone $z = \sqrt{x^2 + y^2}$ inside the cylinder $x^2 + y^2 = 4$.

 a) $S = 4\sqrt{2}\pi$
 b) $S = 0$
 c) $S = 4\pi$
 d) $S = \frac{\pi}{6}(17^{3/2} - 1)$
 f) $S = \pi$
8. Find \(\text{curl} \, \mathbf{F} \), where
\[
\mathbf{F}(x, y, z) = (x^3 + 2x)\mathbf{i} + \cos(y)\mathbf{j} + e^{z^2}\mathbf{k}.
\]

a) \(\nabla \times \mathbf{F} = 3x^2 + 2 - \sin(y) + 2e^{z^2} \)

b) \(\nabla \times \mathbf{F} = \langle 3x^2 + 2, -\sin(y), 2e^{z^2} \rangle \)

c) \(\nabla \times \mathbf{F} = \langle 0, 0, 0 \rangle \)

d) \(\nabla \times \mathbf{F} = \sqrt{(3x^2 + 2)^2 + \sin^2(y) + (2e^{z^2})^2} \)

e) \(\nabla \times \mathbf{F} = 0 \)

9. Verify if the vector field \(\mathbf{F} = \langle x\cos(2y), -x^2\sin(2y) \rangle \) is conservative and evaluate the line integral
\[
I = \int_C \mathbf{F} \cdot d\mathbf{R},
\]
where \(C \) is the curve parametrized by \(\mathbf{R}(t) = \langle t, \pi t^2 \rangle \), for \(0 \leq t \leq 1 \).

a) \(I = \frac{1}{4} \)

b) \(I = \frac{1}{2} \)

c) \(I = 0 \)

d) \(I = 1 \)

e) \(I = 2 \)

10. Use Green’s theorem to evaluate
\[
I = \oint_C (-y + y^2) \, dx + (x + 2xy) \, dy,
\]
where \(C \) is the rectangle with vertices in \((0, 0), (2, 0), (2, 1)\) and \((0, 1)\), traversed counterclockwise.

a) \(I = 4 \)

b) \(I = 0 \)

c) \(I = 1 \)

d) \(I = 2 \)

e) \(I = 8 \)

11. Use the divergence theorem to evaluate
\[
I = \iiint_S \mathbf{F} \cdot \mathbf{N} \, dS,
\]
where \(\mathbf{F} = \langle xz, yx, zy \rangle \), and \(\mathbf{N} \) is the unit outward normal to the surface \(S \) which encloses the box \(0 \leq x \leq 1, 0 \leq y \leq 1 \) and \(0 \leq z \leq 1 \).

a) \(I = 3 \)

b) \(I = 0 \)

c) \(I = 1/2 \)

d) \(I = 3/2 \)

e) \(I = 1 \)
Essay questions.

Show all your work. A correct answer with no work counts as 0.

12. Let the position vector be \(\mathbf{R}(t) = 8t \mathbf{i} + 3\sin(2t) \mathbf{j} - 3\cos(2t) \mathbf{k} \). Find the unit tangent vector \(\mathbf{T}(t) \) and the principal unit normal vector \(\mathbf{N}(t) \).

13. Find and classify all the critical points for the function

\[
f(x, y) = 2x^3 + 3xy - 2y^3 + 7.
\]

14. Use either cylindrical or spherical coordinates to evaluate the triple integral

\[
I = \iiint_D z \, dV,
\]

where \(D \) is the portion of the ball, \(x^2 + y^2 + z^2 \leq 4 \), in the first octant, \(x \geq 0 \), \(y \geq 0 \) and \(z \geq 0 \).

15. Use Stokes’ theorem to evaluate the line integral \(\oint_C \mathbf{F} \cdot d\mathbf{R} \), where

\[
\mathbf{F} = (e^{x^2} + 3y) \mathbf{i} + (\cos y + x) \mathbf{j} + z^2 \mathbf{k}
\]

and \(C \) is the closed curve given by the line segments connecting the points \((1, 0, 0), (0, 1, 0), (0, 0, 1)\) traversed in the given order.